Aplicación de Google Earth Engine en el análisis preliminar de la severidad de incendios en la Reserva y Parque Nacional, Argentina

Los incendios son una de las perturbaciones o disturbios más agresivos y repentinos que pueden afectar a los ecosistemas. Durante los primeros meses del año 2022 se propagaron una serie de incendios de gran magnitud en los esteros del Iberá, el cual es el mayor humedal de Argentina y el segundo de Sudamérica luego del Pantanal en Brasil, con consecuencias ambientales y sociales devastadoras. El objetivo del trabajo consiste en analizar los incendios ocurridos en la reserva y el Parque Nacional Iberá ubicada en la provincia de Corrientes a principios del año 2022 aplicando técnicas de teledetección a través de la plataforma de procesamientos de Google Earth Engine. En este trabajo se calculó las áreas totales afectadas analizándose la severi... Ver más

Guardado en:

0123-4226

2619-2551

27

2024-06-30

Humberto Smichowski, Felix Ignacio Contreras - 2024

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id eec350a628f91cc407a51df4c5657d90
record_format ojs
institution UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDECIENCIASAPLICADASYAMBIENTALES/logo.png
country_str Colombia
collection Revista U.D.C.A Actualidad & Divulgación Científica
title Aplicación de Google Earth Engine en el análisis preliminar de la severidad de incendios en la Reserva y Parque Nacional, Argentina
spellingShingle Aplicación de Google Earth Engine en el análisis preliminar de la severidad de incendios en la Reserva y Parque Nacional, Argentina
Smichowski, Humberto
Contreras, Felix Ignacio
Teledetección de incendios naturales
Incendio de humedales
Mapeo de incendios
Quema de biomasa
Riesgo ambiental
Fire mapping
Remote sensing of natural fires
Environmental risk
Biomass burning
Wetland fire
title_short Aplicación de Google Earth Engine en el análisis preliminar de la severidad de incendios en la Reserva y Parque Nacional, Argentina
title_full Aplicación de Google Earth Engine en el análisis preliminar de la severidad de incendios en la Reserva y Parque Nacional, Argentina
title_fullStr Aplicación de Google Earth Engine en el análisis preliminar de la severidad de incendios en la Reserva y Parque Nacional, Argentina
title_full_unstemmed Aplicación de Google Earth Engine en el análisis preliminar de la severidad de incendios en la Reserva y Parque Nacional, Argentina
title_sort aplicación de google earth engine en el análisis preliminar de la severidad de incendios en la reserva y parque nacional, argentina
title_eng Application of Google Earth Engine in the preliminary analysis of fire severity in the Iberá National Park and Reserve, Argentina
description Los incendios son una de las perturbaciones o disturbios más agresivos y repentinos que pueden afectar a los ecosistemas. Durante los primeros meses del año 2022 se propagaron una serie de incendios de gran magnitud en los esteros del Iberá, el cual es el mayor humedal de Argentina y el segundo de Sudamérica luego del Pantanal en Brasil, con consecuencias ambientales y sociales devastadoras. El objetivo del trabajo consiste en analizar los incendios ocurridos en la reserva y el Parque Nacional Iberá ubicada en la provincia de Corrientes a principios del año 2022 aplicando técnicas de teledetección a través de la plataforma de procesamientos de Google Earth Engine. En este trabajo se calculó las áreas totales afectadas analizándose la severidad de estas. Los resultados muestran que se ha quemado alrededor del 20 % de la reserva y cerca del 50 % del Parque Nacional Iberá con predominio de niveles de severidad entre moderada alta y alta. Las técnicas de teledetección son un insumo significativo en el monitoreo de incendios, lo que la vuelve una herramienta potente en la planificación de normativas o medidas que contribuyan con la mitigación, gestión y alerta temprana de incendios.
description_eng Fires are one of the most aggressive and sudden disturbances that can affect ecosystems. During the first months of the year 2022, a series of fires of great magnitude spread in the Iberá streams, which is the largest wetland in Argentina and the second largest in South America after the Pantanal in Brazil, with devastating environmental and social consequences. The aim of this study is to analyze the fires that occurred in the Iberá Reserve and National Park located in the province of Corrientes at the beginning of the year 2022 using remote sensing techniques through the Google Earth Engine processing platform. In this study, the total affected areas were calculated and their severity was analyzed. The results indicate that approximately 20 % of the reserve and close to 50 % of the Iberá National Park have been burned, with a predominance of severity levels ranging from moderate high to high. Remote sensing techniques are a significant resource in fire monitoring, making it a powerful tool in planning regulations or measures aimed at contributing to the mitigation, management, and early warning of fires.
author Smichowski, Humberto
Contreras, Felix Ignacio
author_facet Smichowski, Humberto
Contreras, Felix Ignacio
topicspa_str_mv Teledetección de incendios naturales
Incendio de humedales
Mapeo de incendios
Quema de biomasa
Riesgo ambiental
topic Teledetección de incendios naturales
Incendio de humedales
Mapeo de incendios
Quema de biomasa
Riesgo ambiental
Fire mapping
Remote sensing of natural fires
Environmental risk
Biomass burning
Wetland fire
topic_facet Teledetección de incendios naturales
Incendio de humedales
Mapeo de incendios
Quema de biomasa
Riesgo ambiental
Fire mapping
Remote sensing of natural fires
Environmental risk
Biomass burning
Wetland fire
citationvolume 27
citationissue 1
citationedition Núm. 1 , Año 2024 :Revista U.D.C.A Actualidad & Divulgación Científica. Enero-Junio
publisher Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
ispartofjournal Revista U.D.C.A Actualidad & Divulgación Científica
source https://revistas.udca.edu.co/index.php/ruadc/article/view/2464
language Español
format Article
rights http://creativecommons.org/licenses/by-nc/4.0
Humberto Smichowski, Felix Ignacio Contreras - 2024
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references ANAYA, J.A.; SIONE, W.; RODRÍGUEZ-MONTELLANO, A.M. 2018. Burned area detection based on time-series analysis in a cloud computing environment. Revista de Teledetección. 51:61-73. https://doi.org/10.4995/raet.2018.8618 ARELLANO PÉREZ, S.; VEGA, J.A.; RODRÍGUEZ Y SILVA, F.; FERNÁNDEZ, C.; VEGA-NIEVA, D.; ÁLVAREZ-GONZÁLEZ, J.G.; RUIZ-GONZÁLEZ, A.D. 2017.Validation of the remote sensing indices dNBR and RdNBR to assess fire severity in the Oia-O Rosal (Pontevedra) wildfire in 2013. Revista de Teledetección. 49:49-61. https://doi.org/10.4995/raet.2017.7137 BOTELLA-MARTÍNEZ, M.A.; FERNÁNDEZ-MANSO, A. 2017. Study of post-fire severity in the Valencia region comparing the NBR, RdNBR and RBR indexes derived from Landsat 8 images. Revista de Teledetección. 49:33-47. https://doi.org/10.4995/raet.2017.7095 CHEN, X.; VOGELMAN, J.E.; ROLLINS, M.; OHLEN, D.; KEY, C.H.; YANG, L.; CHENGQUAN, H.; SHI, H. 2011. Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest. International Journal of Remote Sensing. 32(23):7905-7927. https://doi.org/10.1080/01431161.2010.524678 CHUVIECO, E. 2002. Teledetección Ambiental. Ed. Ariel Ciencia, Barcelona, España. 608p. CHUVIECO, E. 2008. Teledetección Ambiental. La observación de la Tierra desde el Espacio. Tercera edición. Barcelona-España, Editorial Ariel. 590p. CIRNE, P.; MIRANDA, H.S. 2008. Effects of prescribed fire on the survival and release of seeds of Kielmeyera coriacea (Spr.) Mart. (Clusiaceae) in savannas of Central Brazil. Brazilian Journal Plant Physiology. 20(3):197-204. https://doi.org/10.1590/S1677-04202008000300004 CONTRERAS, F.I.; OJEDA, E.A. 2016. El paisaje de Lomadas arenosas de la Reserva de los Esteros del Iberá. En: Contreras, F.I.; Odriozola, M.P. (Compiladores). III Libro de la Junta de Geografía de la Provincia de Corrientes. p.51-58. CRUTZEN, P.J.; ANDREAE, M.O. 1990. Biomass burning in the tropics: impact on atmospheric chemistryand biogeochemical cycles. Science. 250:1669-1678. https://doi.org/10.1126/science.250.4988.1669 DE SANTIS, A.; CHUVIECO, E. 2007. Burn severity estimation from remotely sensed data: Performance of simulation versus empirical models. Remote Sensing of Environment. 108(4):422-435. https://doi.org/10.1016/j.rse.2006.11.022 DELEGIDO, J.; PEZZOLA, A.; CASELLA, A.; WINSCHEL, C.; URREGO, E.P.; JIMENEZ, J.C.; SORIA, G.; SOBRINO, J.A.; MORENO, J. 2018. Estimación del grado de severidad de incendios en el sur de la provincia de Buenos Aires, Argentina, usando Sentinel-2 y su comparación con Landsat-8. Revista de Teledetección. 51:47-60. https://doi.org/10.4995/raet.2018.8934 DÍAZ, A.A.; CONTRERAS, F.I.; FERRELLI, F.; SMICHOWSKI, H. 2023. Efectos de las sequías en los focos de calor en la provincia de Formosa, Argentina: un análisis realizado con herramientas de teledetección. Novum Ambiens. 1(1):1-10. https://doi.org/10.31910/novamb.v1.n1.2023.2336 DÍAZ-DELGADO, R.; PONS, X. 1999. Seguimiento de la regeneración vegetal post-incendio mediante el empleo del NDVI. Revista de teledetección. 12:73-77. EPTING, J.; VERBYLA, D.; SORBEL, B. 2005. Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+. Remote Sensing of Environment. 96(344):328-339. https://doi.org/10.1016/j.rse.2005.03.002 ESCUIN, S.; NAVARRO, R.; FERNANDEZ, P. 2008. Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. International Journal of Remote Sensing. 29(4):1053-1073. https://doi.org/10.1080/01431160701281072 FERRELLI, F. 2023. Remote sensing applications for effective fire disaster management plans: A review. Information System and Smart City. 1(1):133. FLORES-RODRÍGUEZ, A.G.; FLORES-GARNICA, J.G.; GONZÁLEZ-EGUIARTE, D.R.; GALLEGOS-RODRÍGUEZ, A.; ZARAZÚA-VILLASEÑOR, P.; MENA-MUNGUÍA, S. 2021. Análisis comparativo de índices espectrales para ubicar y dimensionar niveles de severidad de incendios forestales. Investigaciones geográficas. 106:e60396. https://doi.org/10.14350/rig.60396 FROLKING, S.; PALACE, M. W.; CLARK, D.B.; CHAMBERS, J.Q.; SHUGART, H.H.; HURTT, G.C. 2009. Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure. Journal of Geophysical Research-Biogeosciences. 114(G2). https://doi.org/10.1029/2008JG000911 GIBSON, K.; NEGRÓN, J.F. 2009. Fire and bark beetle interactions. The Western Bark Beetle Research Group: A Unique Collaboration With Forest Health Protection: Proceedings of a Symposium at the 2007 Society of American Foresters Conference. 51-70. GÓMEZ-SÁNCHEZ, E.; DE LAS HERAS, J.; LUCAS-BORJA, M.; MOYA, D. 2017. Ajuste de metodologías para evaluar severidad de quemado en zonas semiáridas (SE peninsular): incendio Donceles 2012. Revista de Teledetección. 49:103-113. https://doi.org/10.4995/raet.2017.7121 GORELICK, N.; HANCHER, M.; DIXON, M.; ILYUSHCHENKO, S.; THAU, D.; MOORE, R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment. 202:18-27. https://doi.org/10.1016/j.rse.2017.06.031 GUERRERO, A.; PINEDA, L.; PALÀ, V.; CORBERA, J. 2017. Estudio de severidad en el incendio de Albinyana (Catalunya) a partir de datos SENTINEL-2. Revista de Teledetección. (49):115-121. https://doi.org/10.4995/raet.2017.7105 GUILLEM-COGOLLOS, R.; VINUÉ-VISÚS, D.; CASELLES-MIRALLES, V.; ESPINÓS-MORATÓ, H. 2017. Estudio crítico de los índices de severidad y la superficie afectada por el incendio de Sierra de Luna (Zaragoza). Revista de Teledetección. 49:63-77. https://doi.org/10.4995/raet.2017.7117 HEREDIA LACLAUSTRA, A.; MARTÍNEZ SÁNCHEZ, S.; QUINTERO, E.; PIÑEROS, W.; CHUVIECO, E. 2003. Comparación de distintas técnicas de análisis digital para la cartografía de áreas quemadas con imágenes landsat ETM+. Revista internacional de ciencia y tecnológia de la información geográfica. 3:216-234. HOFFMANN, W.A.; ORTHEN, B.; VARGAS DO NASCIMENTO, P.K. 2003. Comparative fire ecology of tropical savanna and forest trees. Functional Ecology, 17(6):720-726. HONORABLE CÁMARA DE DIPUTADOS. 1983. Ley 3771. Crea la Reserva Natural del Iberá. Disponible desde Internet en: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://hcdcorrientes.gov.ar/digesto/legislacion/textos-actualizados/Ley3771.pdf HUDAK, A.T.; MORGAN, P.; BOBBITT, M.J.; SMITH, A.M.; LEWIS, S.A.; LENTILE, L.B; ROBICHAUD, P.R.; CLARK, J.T.; MCKINLEY, R.A. 2007. The relationship of multispectral satellite imagery to immediate fire effects. Fire Ecology. 3:64-90. https://doi.org/10.4996/fireecology.0301064 JIN, Y.; RANDERSON, J.T.; GOETZ, S.J.; BECK, P.S.; LORANTY, M.M.; GOULDEN, M.L. 2012. The influence of burn severity on postfire vegetation recovery and albedo change during early succession in North American boreal forests. Journal of Geophysical Research: Biogeosciences, 117(G1). https://doi.org/10.1029/2011JG001886 KEY, C.H.; BENSON, N.C. 1999. The composite burn index (CBI): Field rating of burn severity. U.S. Geological Survey. KEY, C.H.; BENSON, N.C. 2006. Landscape assessment (LA): Sampling and analysis methods. En: Lutes, D.C.; Keane, R.E.; Caratti, J.F.; Key, C.H.; Benson, N.C.; Sutherland, S.; Gangi, L.J. FIREMON: Fire Effects Monitoring and Inventory System. USDA Forest Service General Technical Report RMS-GTR-164-CD. p.1-55. KITZBERGER, T.; GROSFELD, J. 2016. Diagnóstico de la severidad de fuego y propuestas de restauración y manejo a nivel predial para áreas afectadas por el incendio de Cholila de 2015. Conicet, Inibioma; Fundación Naturaleza para el Futuro. 90p. KUNST, C.; LEDESMA, R.; BRAVO, S.; DEFOSSÉ, G.; GODOY, J.; NAVARRETE, V.; JAIME, N. 2015. Dinámica del contenido de humedad de pastos y su relación con la ecología del fuego en región chaqueña occidental (Argentina). RIA. Revista de investigaciones agropecuarias. 41(1):83-93. LAMONT, B.B.; HE, T.; YAN, Z. 2019. Evolutionary history of fire-stimulated resprouting, flowering, seed release and germination. Biological reviews of the Cambridge Philosophical Society. 94(3):903-928. https://doi.org/10.1111/brv.12483 LENTILE, L.B.; SMITH, F.W.; SHEPPERD, W.D. 2006. Influence of topography and forest structure on patterns of mixed severity fire in ponderosa pine forests of the South Dakota Black Hills, USA. International Journal of Wildland Fire. 15(4):557-566. https://doi.org/10.1071/WF05096 LONG, T.; ZHANG, Z.; HE, G.; JIAO, W.; TANG, C.; WU, B.; ZHANG, X.; WANG, G.; YIN, R. 2019. 30 m resolution global annual burned area mapping based on Landsat Images and Google Earth Engine. Remote Sensing. 11(5):489. https://doi.org/10.3390/rs11050489 LÓPEZ GARCÍA, A.R. 2020. Estudio de la severidad del incendio de 2012 y regeneración de la vegetación del Bosque La Primavera, México, mediante imágenes LANDSAT 7. Revista cartográfica. 101:35-50. https://doi.org/10.35424/rcarto.i101.420 MARTÍNEZ, S.; CHUVIECO, E.; AGUADO, I.; SALAS, J. 2017. Severidad y regeneración en grandes incendios forestales: análisis a partir de series temporales de imágenes Landsat. Revista de Teledetección. 49:17-32. https://doi.org/10.4995/raet.2017.7182 MATTAR, C.; SANTAMARÍA-ARTIGAS, A.; DURÁN-ALARCÓN, C. 2012. Estimación del área quemada en el Parque Nacional Torres del Paine utilizando datos de teledetección. Revista de Teledetección. 38:36-50. MINISTERIO DE AMBIENTE Y DESARROLLO SOSTENIBLE-MAYDS. 2020. Manejo del Fuego. Reporte de Incendios. 9p. Disponible desde Internet en: https://www.argentina.gob.ar/sites/default/files/31-dic-reporte_incendios_.pdf MONTIEL, R.; ZANINOVICH, S.C.; BEDRIJ, N.A.; INSAURRALDE, A.; VERDOLJAK, J.J.; FONTANA, J.L.; GATTI, M.G. 2021. Eucalypt plantations for forest restoration in a fire‐prone mosaic of grasslands and forests in northern Argentina. Restoration Ecology. 29(8):e13452. https://doi.org/10.1111/rec.13452 MONTORIO LLOVERÍA, R.M.; PÉREZ-CABELLO, F.; GARCÍA-MARTÍN, A.; VLASSOVA, L.; DE LA RIVA FERNÁNDEZ, J. 2014. La severidad del fuego: revisión de conceptos, métodos y efectos ambientales. En: Arnáez Vadillo, J.; González Sampériz, P.; Lasanta Martínez, T.; Valero Garcés, B.L.; García Ruiz, J.M. Geoecología, cambio ambiental y paisaje: homenaje al profesor José María García Ruiz. p.427-440. NEARY, D.G.; RYAN, K.C.; DEBANO, L.F. 2005. Wildland fire in ecosystems. Effects of fire on soil and water. USDA. Rocky Mountain Research Station. 250p. https://doi.org/10.2737/RMRS-GTR-42-V4 NEIFF, J.J. 2001. Humedales de la Argentina: sinpsis, problemas y perspectivas futuras. En: Fernández Cirelli, A. El agua en Iberoamérica: Funciones de los humedales. Calidad de vida y agua segura. CYTED. España. p.83-112. NEIFF, J.J. 2003. Los ambientes acuáticos y palustres del Iberá. En: Poi de Neiff A. (Ed.) Limnología del Iberá: Aspectos físicos, químicos y biológicos de las Aguas. EUDENE. NICHO ALVARADO, O.J.; NAMAY VILLANUEVA, L.; CHIMOY GOMEZ, J.G.; CÁRDENAS DURAND, A.G. 2021. Metanogénesis y biodigestores. Universidad Nacional José Faustino Sánchez Carrión. OMI, P.N. 2005. Forest fires: A reference handbook. ABC-CLIO. 368p. PATTERSON, M.W.; YOOL, S.R. 1998. Mapping fire-induced vegetation mortality using Landsat Thematic Mapper data: A comparison of linear transformation techniques. Remote Sensing of Environment. 65(2):132-142. https://doi.org/10.1016/S0034-4257(98)00018-2 PAULA, S.; ARIANOUTSOU, M.; KAZANIS, D.; TAVSANOGLU, Ç.; LLORET, F.; BUHK, C.; OJEDA, F.; LUNA, B.; MORENO, J.M.; RODRIGO, A.; ESPELTA, J.M.; PALACIO, S.; FERNÁNDEZ-SANTOS, B.; FERNANDES, P.M.; PAUSAS, J. G. 2009. Fire-related traits for plant species of the Mediterranean Basin. Ecology. 90(5). https://doi.org/10.1890/08-1309.1 PAUSAS, J. 2012. Incendios Forestales. Una visión desde la Ecología. Madrid: CSIC. Catarata. 119p. PEÑA, M.A.; ULLOA, J. 2017. Mapeo de la recuperación de la vegetación quemada mediante la clasificación de índices espectrales pre-y post-incendio. Revista de Teledetección. 50:37-48. https://doi.org/10.4995/raet.2017.7931 PERILLA, G.A.; MAS, J.F. 2020. Google Earth Engine (GEE): una poderosa herramienta que vincula el potencial de los datos masivos y la eficacia del procesamiento en la nube. Investigaciones Geográficas. 101:e59929. https://doi.org/10.14350/rig.59929 ROBICHAUD, P.R.; BEYERS, J.L.; NEARY, D.G. 2000. Evaluating the effectiveness of postfire rehabilitation treatments. USDA Forest Service. General Technical Report. RMRS-GTR.-63. 89p. ROMERO-MARISCAL, G.; GARCIA-CHEVESICH, P.A.; MORALES-PAREDES, L.; ARENAZAS-RODRIGUEZ, A.; TICONA-QUEA, J.; VANZIN, G.; SHARP, J.O. 2023. Peruvian wetlands: National survey, diagnosis, and further steps toward their protection. Sustainability. 15(10):8255. https://doi.org/10.3390/su15108255 SÁNCHEZ, J.M.; RUBIO, E.; LÓPEZ-SERRANO, F.R.; ARTIGAO, M.M.; CASELLES, V.; MOYA, D.N.; ODI, M.M. 2009. Estudio a través de imágenes Landsat 5-TM del efecto de un incendio sobre el balance de energía en superficie en una zona de bosque mediterráneo. Revista de Teledetección. 32:72-85. SAUCEDO, G.I.; PERUCCA, A.R.; KURTZ, D.B. 2023. Las causas de los incendios de principios del año 2022 en la provincia de Corrientes. Ecología Austral. 33(1):273-284. https://doi.org/10.25260/EA.23.33.1.0.2020 SMICHOWSKI, H.; CONTRERAS, F.I.; GIESE, A.C.; 2022. Seguimiento de la extensión areal de los humedales subtropicales del noreste de Argentina mediante la aplicación de Google Earth Engine. Investigaciones Geográficas. 78:131-152. https://doi.org/10.14198/INGEO.21343 SMICHOWSKI, H.; MONTIEL, M.R.; ROMERO, V.; KOWALEWSKI, M.; CONTRERAS, F.I. 2021. Evaluación de incendios en áreas periurbanas de la ciudad de corrientes (Argentina) durante la sequía extrema del año 2020. Papeles de Geografía. 67:151-167. https://doi.org/10.6018/geografia.486441 SOARES, V.C.; SCREMIN-DIAS, E.; DAIBES, L.F.; DAMASCENO-JUNIOR, G.A.; POTT, A.; DE LIMA, L.B. 2021. Fire has little to no effect on the enhancement of germination, but buried seeds may survive in a Neotropical wetland. Flora. 278:151801. https://doi.org/10.1016/j.flora.2021.151801 TANASE, M.; DE LA RIVA, J.; PÉREZ-CABELLO, F. 2011. Estimating burn severity at the regional level using optically based indices. Canadian Journal of Forest Research. 41:863-872. https://doi.org/10.1139/x11-011 TESSLER, N.; WITTENBERG, L.; PROVIZOR, E; GREENBAUM, N. 2014. The influence of short interval recurrent forest fires on the abundance of Aleppo pine (Pinus halepensis Mill.) on Mount Carmel, Israel. Forest Ecology Management. 324:109-116. https://doi.org/10.1016/j.foreco.2014.02.014 VASCO-LUCIO, M.M.; GUAIÑA-YUNGÁN, J.I.; ATI-CUTIUPALA, G.M.; LARA-VÁSCONEZ, N.X. 2022. Cálculo de la severidad de incendios en el periodo 2017 a 2020 en la subcuenca del río chambo, mediante teledetección y el análisis geo estadístico. Domino de las Ciencias. 8(2):84-96. http://dx.doi.org/10.23857/dc.v8i2.2744 VERAVERBEKE, S.; HOOK, S.J. 2013. Evaluating spectral indices and spectral mixture analysis for assessing fire severity, combustion completeness and carbon emissions. Journal of the International Association of Wildland Fire. 22(5):707-720. https://doi.org/10.1071/WF12168 WANG, G.; ZHANG, Y.; XIE, W.; QU, Y. 2022. Leveraging Google Earth Engine and semi-supervised generative adversarial networks to assess initial burn severity in forest. Canadian Journal of Remote Sensing. 48(3):411-424. https://doi.org/10.1080/07038992.2022.2054405 ZUPO, T.; DAIBES, L.F.; PAUSAS, J.G.; FIDELIS, A. 2021. Post‐fire regeneration strategies in a frequently burned Cerrado community. Journal of Vegetation Science. 32(1):e12968. https://doi.org/10.1111/jvs.12968
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2024-06-30
date_accessioned 2024-06-30T00:00:00Z
date_available 2024-06-30T00:00:00Z
url https://revistas.udca.edu.co/index.php/ruadc/article/view/2464
url_doi https://doi.org/10.31910/rudca.v27.n1.2024.2464
issn 0123-4226
eissn 2619-2551
doi 10.31910/rudca.v27.n1.2024.2464
url4_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/download/2464/2942
url2_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/download/2464/2950
_version_ 1797194899316015104
spelling Aplicación de Google Earth Engine en el análisis preliminar de la severidad de incendios en la Reserva y Parque Nacional, Argentina
ANAYA, J.A.; SIONE, W.; RODRÍGUEZ-MONTELLANO, A.M. 2018. Burned area detection based on time-series analysis in a cloud computing environment. Revista de Teledetección. 51:61-73. https://doi.org/10.4995/raet.2018.8618 ARELLANO PÉREZ, S.; VEGA, J.A.; RODRÍGUEZ Y SILVA, F.; FERNÁNDEZ, C.; VEGA-NIEVA, D.; ÁLVAREZ-GONZÁLEZ, J.G.; RUIZ-GONZÁLEZ, A.D. 2017.Validation of the remote sensing indices dNBR and RdNBR to assess fire severity in the Oia-O Rosal (Pontevedra) wildfire in 2013. Revista de Teledetección. 49:49-61. https://doi.org/10.4995/raet.2017.7137 BOTELLA-MARTÍNEZ, M.A.; FERNÁNDEZ-MANSO, A. 2017. Study of post-fire severity in the Valencia region comparing the NBR, RdNBR and RBR indexes derived from Landsat 8 images. Revista de Teledetección. 49:33-47. https://doi.org/10.4995/raet.2017.7095 CHEN, X.; VOGELMAN, J.E.; ROLLINS, M.; OHLEN, D.; KEY, C.H.; YANG, L.; CHENGQUAN, H.; SHI, H. 2011. Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest. International Journal of Remote Sensing. 32(23):7905-7927. https://doi.org/10.1080/01431161.2010.524678 CHUVIECO, E. 2002. Teledetección Ambiental. Ed. Ariel Ciencia, Barcelona, España. 608p. CHUVIECO, E. 2008. Teledetección Ambiental. La observación de la Tierra desde el Espacio. Tercera edición. Barcelona-España, Editorial Ariel. 590p. CIRNE, P.; MIRANDA, H.S. 2008. Effects of prescribed fire on the survival and release of seeds of Kielmeyera coriacea (Spr.) Mart. (Clusiaceae) in savannas of Central Brazil. Brazilian Journal Plant Physiology. 20(3):197-204. https://doi.org/10.1590/S1677-04202008000300004 CONTRERAS, F.I.; OJEDA, E.A. 2016. El paisaje de Lomadas arenosas de la Reserva de los Esteros del Iberá. En: Contreras, F.I.; Odriozola, M.P. (Compiladores). III Libro de la Junta de Geografía de la Provincia de Corrientes. p.51-58. CRUTZEN, P.J.; ANDREAE, M.O. 1990. Biomass burning in the tropics: impact on atmospheric chemistryand biogeochemical cycles. Science. 250:1669-1678. https://doi.org/10.1126/science.250.4988.1669 DE SANTIS, A.; CHUVIECO, E. 2007. Burn severity estimation from remotely sensed data: Performance of simulation versus empirical models. Remote Sensing of Environment. 108(4):422-435. https://doi.org/10.1016/j.rse.2006.11.022 DELEGIDO, J.; PEZZOLA, A.; CASELLA, A.; WINSCHEL, C.; URREGO, E.P.; JIMENEZ, J.C.; SORIA, G.; SOBRINO, J.A.; MORENO, J. 2018. Estimación del grado de severidad de incendios en el sur de la provincia de Buenos Aires, Argentina, usando Sentinel-2 y su comparación con Landsat-8. Revista de Teledetección. 51:47-60. https://doi.org/10.4995/raet.2018.8934 DÍAZ, A.A.; CONTRERAS, F.I.; FERRELLI, F.; SMICHOWSKI, H. 2023. Efectos de las sequías en los focos de calor en la provincia de Formosa, Argentina: un análisis realizado con herramientas de teledetección. Novum Ambiens. 1(1):1-10. https://doi.org/10.31910/novamb.v1.n1.2023.2336 DÍAZ-DELGADO, R.; PONS, X. 1999. Seguimiento de la regeneración vegetal post-incendio mediante el empleo del NDVI. Revista de teledetección. 12:73-77. EPTING, J.; VERBYLA, D.; SORBEL, B. 2005. Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+. Remote Sensing of Environment. 96(344):328-339. https://doi.org/10.1016/j.rse.2005.03.002 ESCUIN, S.; NAVARRO, R.; FERNANDEZ, P. 2008. Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. International Journal of Remote Sensing. 29(4):1053-1073. https://doi.org/10.1080/01431160701281072 FERRELLI, F. 2023. Remote sensing applications for effective fire disaster management plans: A review. Information System and Smart City. 1(1):133. FLORES-RODRÍGUEZ, A.G.; FLORES-GARNICA, J.G.; GONZÁLEZ-EGUIARTE, D.R.; GALLEGOS-RODRÍGUEZ, A.; ZARAZÚA-VILLASEÑOR, P.; MENA-MUNGUÍA, S. 2021. Análisis comparativo de índices espectrales para ubicar y dimensionar niveles de severidad de incendios forestales. Investigaciones geográficas. 106:e60396. https://doi.org/10.14350/rig.60396 FROLKING, S.; PALACE, M. W.; CLARK, D.B.; CHAMBERS, J.Q.; SHUGART, H.H.; HURTT, G.C. 2009. Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure. Journal of Geophysical Research-Biogeosciences. 114(G2). https://doi.org/10.1029/2008JG000911 GIBSON, K.; NEGRÓN, J.F. 2009. Fire and bark beetle interactions. The Western Bark Beetle Research Group: A Unique Collaboration With Forest Health Protection: Proceedings of a Symposium at the 2007 Society of American Foresters Conference. 51-70. GÓMEZ-SÁNCHEZ, E.; DE LAS HERAS, J.; LUCAS-BORJA, M.; MOYA, D. 2017. Ajuste de metodologías para evaluar severidad de quemado en zonas semiáridas (SE peninsular): incendio Donceles 2012. Revista de Teledetección. 49:103-113. https://doi.org/10.4995/raet.2017.7121 GORELICK, N.; HANCHER, M.; DIXON, M.; ILYUSHCHENKO, S.; THAU, D.; MOORE, R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment. 202:18-27. https://doi.org/10.1016/j.rse.2017.06.031 GUERRERO, A.; PINEDA, L.; PALÀ, V.; CORBERA, J. 2017. Estudio de severidad en el incendio de Albinyana (Catalunya) a partir de datos SENTINEL-2. Revista de Teledetección. (49):115-121. https://doi.org/10.4995/raet.2017.7105 GUILLEM-COGOLLOS, R.; VINUÉ-VISÚS, D.; CASELLES-MIRALLES, V.; ESPINÓS-MORATÓ, H. 2017. Estudio crítico de los índices de severidad y la superficie afectada por el incendio de Sierra de Luna (Zaragoza). Revista de Teledetección. 49:63-77. https://doi.org/10.4995/raet.2017.7117 HEREDIA LACLAUSTRA, A.; MARTÍNEZ SÁNCHEZ, S.; QUINTERO, E.; PIÑEROS, W.; CHUVIECO, E. 2003. Comparación de distintas técnicas de análisis digital para la cartografía de áreas quemadas con imágenes landsat ETM+. Revista internacional de ciencia y tecnológia de la información geográfica. 3:216-234. HOFFMANN, W.A.; ORTHEN, B.; VARGAS DO NASCIMENTO, P.K. 2003. Comparative fire ecology of tropical savanna and forest trees. Functional Ecology, 17(6):720-726. HONORABLE CÁMARA DE DIPUTADOS. 1983. Ley 3771. Crea la Reserva Natural del Iberá. Disponible desde Internet en: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://hcdcorrientes.gov.ar/digesto/legislacion/textos-actualizados/Ley3771.pdf HUDAK, A.T.; MORGAN, P.; BOBBITT, M.J.; SMITH, A.M.; LEWIS, S.A.; LENTILE, L.B; ROBICHAUD, P.R.; CLARK, J.T.; MCKINLEY, R.A. 2007. The relationship of multispectral satellite imagery to immediate fire effects. Fire Ecology. 3:64-90. https://doi.org/10.4996/fireecology.0301064 JIN, Y.; RANDERSON, J.T.; GOETZ, S.J.; BECK, P.S.; LORANTY, M.M.; GOULDEN, M.L. 2012. The influence of burn severity on postfire vegetation recovery and albedo change during early succession in North American boreal forests. Journal of Geophysical Research: Biogeosciences, 117(G1). https://doi.org/10.1029/2011JG001886 KEY, C.H.; BENSON, N.C. 1999. The composite burn index (CBI): Field rating of burn severity. U.S. Geological Survey. KEY, C.H.; BENSON, N.C. 2006. Landscape assessment (LA): Sampling and analysis methods. En: Lutes, D.C.; Keane, R.E.; Caratti, J.F.; Key, C.H.; Benson, N.C.; Sutherland, S.; Gangi, L.J. FIREMON: Fire Effects Monitoring and Inventory System. USDA Forest Service General Technical Report RMS-GTR-164-CD. p.1-55. KITZBERGER, T.; GROSFELD, J. 2016. Diagnóstico de la severidad de fuego y propuestas de restauración y manejo a nivel predial para áreas afectadas por el incendio de Cholila de 2015. Conicet, Inibioma; Fundación Naturaleza para el Futuro. 90p. KUNST, C.; LEDESMA, R.; BRAVO, S.; DEFOSSÉ, G.; GODOY, J.; NAVARRETE, V.; JAIME, N. 2015. Dinámica del contenido de humedad de pastos y su relación con la ecología del fuego en región chaqueña occidental (Argentina). RIA. Revista de investigaciones agropecuarias. 41(1):83-93. LAMONT, B.B.; HE, T.; YAN, Z. 2019. Evolutionary history of fire-stimulated resprouting, flowering, seed release and germination. Biological reviews of the Cambridge Philosophical Society. 94(3):903-928. https://doi.org/10.1111/brv.12483 LENTILE, L.B.; SMITH, F.W.; SHEPPERD, W.D. 2006. Influence of topography and forest structure on patterns of mixed severity fire in ponderosa pine forests of the South Dakota Black Hills, USA. International Journal of Wildland Fire. 15(4):557-566. https://doi.org/10.1071/WF05096 LONG, T.; ZHANG, Z.; HE, G.; JIAO, W.; TANG, C.; WU, B.; ZHANG, X.; WANG, G.; YIN, R. 2019. 30 m resolution global annual burned area mapping based on Landsat Images and Google Earth Engine. Remote Sensing. 11(5):489. https://doi.org/10.3390/rs11050489 LÓPEZ GARCÍA, A.R. 2020. Estudio de la severidad del incendio de 2012 y regeneración de la vegetación del Bosque La Primavera, México, mediante imágenes LANDSAT 7. Revista cartográfica. 101:35-50. https://doi.org/10.35424/rcarto.i101.420 MARTÍNEZ, S.; CHUVIECO, E.; AGUADO, I.; SALAS, J. 2017. Severidad y regeneración en grandes incendios forestales: análisis a partir de series temporales de imágenes Landsat. Revista de Teledetección. 49:17-32. https://doi.org/10.4995/raet.2017.7182 MATTAR, C.; SANTAMARÍA-ARTIGAS, A.; DURÁN-ALARCÓN, C. 2012. Estimación del área quemada en el Parque Nacional Torres del Paine utilizando datos de teledetección. Revista de Teledetección. 38:36-50. MINISTERIO DE AMBIENTE Y DESARROLLO SOSTENIBLE-MAYDS. 2020. Manejo del Fuego. Reporte de Incendios. 9p. Disponible desde Internet en: https://www.argentina.gob.ar/sites/default/files/31-dic-reporte_incendios_.pdf MONTIEL, R.; ZANINOVICH, S.C.; BEDRIJ, N.A.; INSAURRALDE, A.; VERDOLJAK, J.J.; FONTANA, J.L.; GATTI, M.G. 2021. Eucalypt plantations for forest restoration in a fire‐prone mosaic of grasslands and forests in northern Argentina. Restoration Ecology. 29(8):e13452. https://doi.org/10.1111/rec.13452 MONTORIO LLOVERÍA, R.M.; PÉREZ-CABELLO, F.; GARCÍA-MARTÍN, A.; VLASSOVA, L.; DE LA RIVA FERNÁNDEZ, J. 2014. La severidad del fuego: revisión de conceptos, métodos y efectos ambientales. En: Arnáez Vadillo, J.; González Sampériz, P.; Lasanta Martínez, T.; Valero Garcés, B.L.; García Ruiz, J.M. Geoecología, cambio ambiental y paisaje: homenaje al profesor José María García Ruiz. p.427-440. NEARY, D.G.; RYAN, K.C.; DEBANO, L.F. 2005. Wildland fire in ecosystems. Effects of fire on soil and water. USDA. Rocky Mountain Research Station. 250p. https://doi.org/10.2737/RMRS-GTR-42-V4 NEIFF, J.J. 2001. Humedales de la Argentina: sinpsis, problemas y perspectivas futuras. En: Fernández Cirelli, A. El agua en Iberoamérica: Funciones de los humedales. Calidad de vida y agua segura. CYTED. España. p.83-112. NEIFF, J.J. 2003. Los ambientes acuáticos y palustres del Iberá. En: Poi de Neiff A. (Ed.) Limnología del Iberá: Aspectos físicos, químicos y biológicos de las Aguas. EUDENE. NICHO ALVARADO, O.J.; NAMAY VILLANUEVA, L.; CHIMOY GOMEZ, J.G.; CÁRDENAS DURAND, A.G. 2021. Metanogénesis y biodigestores. Universidad Nacional José Faustino Sánchez Carrión. OMI, P.N. 2005. Forest fires: A reference handbook. ABC-CLIO. 368p. PATTERSON, M.W.; YOOL, S.R. 1998. Mapping fire-induced vegetation mortality using Landsat Thematic Mapper data: A comparison of linear transformation techniques. Remote Sensing of Environment. 65(2):132-142. https://doi.org/10.1016/S0034-4257(98)00018-2 PAULA, S.; ARIANOUTSOU, M.; KAZANIS, D.; TAVSANOGLU, Ç.; LLORET, F.; BUHK, C.; OJEDA, F.; LUNA, B.; MORENO, J.M.; RODRIGO, A.; ESPELTA, J.M.; PALACIO, S.; FERNÁNDEZ-SANTOS, B.; FERNANDES, P.M.; PAUSAS, J. G. 2009. Fire-related traits for plant species of the Mediterranean Basin. Ecology. 90(5). https://doi.org/10.1890/08-1309.1 PAUSAS, J. 2012. Incendios Forestales. Una visión desde la Ecología. Madrid: CSIC. Catarata. 119p. PEÑA, M.A.; ULLOA, J. 2017. Mapeo de la recuperación de la vegetación quemada mediante la clasificación de índices espectrales pre-y post-incendio. Revista de Teledetección. 50:37-48. https://doi.org/10.4995/raet.2017.7931 PERILLA, G.A.; MAS, J.F. 2020. Google Earth Engine (GEE): una poderosa herramienta que vincula el potencial de los datos masivos y la eficacia del procesamiento en la nube. Investigaciones Geográficas. 101:e59929. https://doi.org/10.14350/rig.59929 ROBICHAUD, P.R.; BEYERS, J.L.; NEARY, D.G. 2000. Evaluating the effectiveness of postfire rehabilitation treatments. USDA Forest Service. General Technical Report. RMRS-GTR.-63. 89p. ROMERO-MARISCAL, G.; GARCIA-CHEVESICH, P.A.; MORALES-PAREDES, L.; ARENAZAS-RODRIGUEZ, A.; TICONA-QUEA, J.; VANZIN, G.; SHARP, J.O. 2023. Peruvian wetlands: National survey, diagnosis, and further steps toward their protection. Sustainability. 15(10):8255. https://doi.org/10.3390/su15108255 SÁNCHEZ, J.M.; RUBIO, E.; LÓPEZ-SERRANO, F.R.; ARTIGAO, M.M.; CASELLES, V.; MOYA, D.N.; ODI, M.M. 2009. Estudio a través de imágenes Landsat 5-TM del efecto de un incendio sobre el balance de energía en superficie en una zona de bosque mediterráneo. Revista de Teledetección. 32:72-85. SAUCEDO, G.I.; PERUCCA, A.R.; KURTZ, D.B. 2023. Las causas de los incendios de principios del año 2022 en la provincia de Corrientes. Ecología Austral. 33(1):273-284. https://doi.org/10.25260/EA.23.33.1.0.2020 SMICHOWSKI, H.; CONTRERAS, F.I.; GIESE, A.C.; 2022. Seguimiento de la extensión areal de los humedales subtropicales del noreste de Argentina mediante la aplicación de Google Earth Engine. Investigaciones Geográficas. 78:131-152. https://doi.org/10.14198/INGEO.21343 SMICHOWSKI, H.; MONTIEL, M.R.; ROMERO, V.; KOWALEWSKI, M.; CONTRERAS, F.I. 2021. Evaluación de incendios en áreas periurbanas de la ciudad de corrientes (Argentina) durante la sequía extrema del año 2020. Papeles de Geografía. 67:151-167. https://doi.org/10.6018/geografia.486441 SOARES, V.C.; SCREMIN-DIAS, E.; DAIBES, L.F.; DAMASCENO-JUNIOR, G.A.; POTT, A.; DE LIMA, L.B. 2021. Fire has little to no effect on the enhancement of germination, but buried seeds may survive in a Neotropical wetland. Flora. 278:151801. https://doi.org/10.1016/j.flora.2021.151801 TANASE, M.; DE LA RIVA, J.; PÉREZ-CABELLO, F. 2011. Estimating burn severity at the regional level using optically based indices. Canadian Journal of Forest Research. 41:863-872. https://doi.org/10.1139/x11-011 TESSLER, N.; WITTENBERG, L.; PROVIZOR, E; GREENBAUM, N. 2014. The influence of short interval recurrent forest fires on the abundance of Aleppo pine (Pinus halepensis Mill.) on Mount Carmel, Israel. Forest Ecology Management. 324:109-116. https://doi.org/10.1016/j.foreco.2014.02.014 VASCO-LUCIO, M.M.; GUAIÑA-YUNGÁN, J.I.; ATI-CUTIUPALA, G.M.; LARA-VÁSCONEZ, N.X. 2022. Cálculo de la severidad de incendios en el periodo 2017 a 2020 en la subcuenca del río chambo, mediante teledetección y el análisis geo estadístico. Domino de las Ciencias. 8(2):84-96. http://dx.doi.org/10.23857/dc.v8i2.2744 VERAVERBEKE, S.; HOOK, S.J. 2013. Evaluating spectral indices and spectral mixture analysis for assessing fire severity, combustion completeness and carbon emissions. Journal of the International Association of Wildland Fire. 22(5):707-720. https://doi.org/10.1071/WF12168 WANG, G.; ZHANG, Y.; XIE, W.; QU, Y. 2022. Leveraging Google Earth Engine and semi-supervised generative adversarial networks to assess initial burn severity in forest. Canadian Journal of Remote Sensing. 48(3):411-424. https://doi.org/10.1080/07038992.2022.2054405 ZUPO, T.; DAIBES, L.F.; PAUSAS, J.G.; FIDELIS, A. 2021. Post‐fire regeneration strategies in a frequently burned Cerrado community. Journal of Vegetation Science. 32(1):e12968. https://doi.org/10.1111/jvs.12968
Revista U.D.C.A Actualidad & Divulgación Científica
https://revistas.udca.edu.co/index.php/ruadc/article/view/2464
Español
http://creativecommons.org/licenses/by-nc/4.0
Humberto Smichowski, Felix Ignacio Contreras - 2024
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
info:eu-repo/semantics/article
application/pdf
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_1843
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
text/xml
Artículo de revista
Teledetección de incendios naturales
Los incendios son una de las perturbaciones o disturbios más agresivos y repentinos que pueden afectar a los ecosistemas. Durante los primeros meses del año 2022 se propagaron una serie de incendios de gran magnitud en los esteros del Iberá, el cual es el mayor humedal de Argentina y el segundo de Sudamérica luego del Pantanal en Brasil, con consecuencias ambientales y sociales devastadoras. El objetivo del trabajo consiste en analizar los incendios ocurridos en la reserva y el Parque Nacional Iberá ubicada en la provincia de Corrientes a principios del año 2022 aplicando técnicas de teledetección a través de la plataforma de procesamientos de Google Earth Engine. En este trabajo se calculó las áreas totales afectadas analizándose la severidad de estas. Los resultados muestran que se ha quemado alrededor del 20 % de la reserva y cerca del 50 % del Parque Nacional Iberá con predominio de niveles de severidad entre moderada alta y alta. Las técnicas de teledetección son un insumo significativo en el monitoreo de incendios, lo que la vuelve una herramienta potente en la planificación de normativas o medidas que contribuyan con la mitigación, gestión y alerta temprana de incendios.
Smichowski, Humberto
Contreras, Felix Ignacio
Incendio de humedales
Mapeo de incendios
Quema de biomasa
Riesgo ambiental
Publication
1
27
Núm. 1 , Año 2024 :Revista U.D.C.A Actualidad & Divulgación Científica. Enero-Junio
Fire mapping
Application of Google Earth Engine in the preliminary analysis of fire severity in the Iberá National Park and Reserve, Argentina
Fires are one of the most aggressive and sudden disturbances that can affect ecosystems. During the first months of the year 2022, a series of fires of great magnitude spread in the Iberá streams, which is the largest wetland in Argentina and the second largest in South America after the Pantanal in Brazil, with devastating environmental and social consequences. The aim of this study is to analyze the fires that occurred in the Iberá Reserve and National Park located in the province of Corrientes at the beginning of the year 2022 using remote sensing techniques through the Google Earth Engine processing platform. In this study, the total affected areas were calculated and their severity was analyzed. The results indicate that approximately 20 % of the reserve and close to 50 % of the Iberá National Park have been burned, with a predominance of severity levels ranging from moderate high to high. Remote sensing techniques are a significant resource in fire monitoring, making it a powerful tool in planning regulations or measures aimed at contributing to the mitigation, management, and early warning of fires.
Remote sensing of natural fires
Journal article
Environmental risk
Biomass burning
Wetland fire
2024-06-30T00:00:00Z
2024-06-30T00:00:00Z
2024-06-30
2619-2551
https://revistas.udca.edu.co/index.php/ruadc/article/download/2464/2942
0123-4226
https://doi.org/10.31910/rudca.v27.n1.2024.2464
10.31910/rudca.v27.n1.2024.2464
https://revistas.udca.edu.co/index.php/ruadc/article/download/2464/2950