Revisión de estudios pre-clínicos de candidatos a vacuna contra la malaria causada por Plasmodium falciparum

Introducción. La malaria es una enfermedad que causa aproximadamente 400.000 muertes al año, especialmente en niños menores de 5 años; la búsqueda de una vacuna eficaz y segura sigue siendo un reto para los investigadores, sin embargo, antes de iniciar los estudios de fase clínica, los ensayos preclínicos en modelo animal deben brindar resultados de seguridad e inmunogenicidad que lleven a respuestas eficaces de protección. Objetivo. Revisar las principales características de la respuesta inmunológica y eficacia en estudios pre-clínicos de candidatos a vacuna contra la malaria por Plasmodium falciparum. Métodos. Revisión descriptiva de los principales estudios preclínicos de candidatos a vacuna contra la malaria, basados en sub... Ver más

Guardado en:

2389-7325

2539-2018

6

2019-07-26

200

223

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Revista Investigación en Salud Universidad de Boyacá - 2019

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id d791c2ca2d6749d2ac052fe907cb954f
record_format ojs
institution UNIVERSIDAD DE BOYACÁ
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDEBOYACA/logo.png
country_str Colombia
collection Revista Investigación en Salud Universidad de Boyacá
title Revisión de estudios pre-clínicos de candidatos a vacuna contra la malaria causada por Plasmodium falciparum
spellingShingle Revisión de estudios pre-clínicos de candidatos a vacuna contra la malaria causada por Plasmodium falciparum
Camargo Mancipe, Anny Jineth
Diaz Arévalo, Diana
Salamanca, David Ricardo
Chaparro, Laura Esperanza Cuy
Mancipe, Diego Fernando Camargo
malaria
vacunas
inmunogenicidad vacunal
Plasmodium falciparum
eficacia
experimentación animal
Plasmodium falciparum
malaria
imunogenicidade vacinal
vaccines
eficácia
experimentação animal
immunogenicity vaccine
Plasmodium falciparum
efficacy
vacinas
Malária
animal experimentation
title_short Revisión de estudios pre-clínicos de candidatos a vacuna contra la malaria causada por Plasmodium falciparum
title_full Revisión de estudios pre-clínicos de candidatos a vacuna contra la malaria causada por Plasmodium falciparum
title_fullStr Revisión de estudios pre-clínicos de candidatos a vacuna contra la malaria causada por Plasmodium falciparum
title_full_unstemmed Revisión de estudios pre-clínicos de candidatos a vacuna contra la malaria causada por Plasmodium falciparum
title_sort revisión de estudios pre-clínicos de candidatos a vacuna contra la malaria causada por plasmodium falciparum
title_eng Review of preclinical studies of candidates for malaria vaccine caused by Plasmodium falciparum
description Introducción. La malaria es una enfermedad que causa aproximadamente 400.000 muertes al año, especialmente en niños menores de 5 años; la búsqueda de una vacuna eficaz y segura sigue siendo un reto para los investigadores, sin embargo, antes de iniciar los estudios de fase clínica, los ensayos preclínicos en modelo animal deben brindar resultados de seguridad e inmunogenicidad que lleven a respuestas eficaces de protección. Objetivo. Revisar las principales características de la respuesta inmunológica y eficacia en estudios pre-clínicos de candidatos a vacuna contra la malaria por Plasmodium falciparum. Métodos. Revisión descriptiva de los principales estudios preclínicos de candidatos a vacuna contra la malaria, basados en subunidades, parásitos atenuados y vacunas multi-estadio, multi-epitope, que se han realizado para evaluar inmunogenicidad  y eficacia en modelo animal. Esta revisión se llevó a cabo a partir de la búsqueda de literatura en bases de datos electrónicas especializadas en investigación científica. Se encontraron 118 documentos, de los cuales se seleccionaron 91 y se excluyeron 17 por no cumplir con los criterios de inclusión, para un total de 74 referencias analizadas. Resultados. Muchos candidatos a vacuna contra la malaria causada por Plasmodium falciparum han reportado resultados prometedores contra cepas homologas, sin embargo, ante el reto con cepas heterólogas la eficacia disminuye, por otra parte, la respuesta inmune y protectiva duradera continúa siendo un objetivo clave, convirtiéndose en una prioridad. Conclusiones. Los estudios preclínicos en modelo animal son necesarios antes de avanzar a fases clínicas, la evaluación de inmunogenicidad y eficacia es un aspecto esencial para la evaluación de candidatos a vacuna.
description_eng Introduction. Malaria disease causes approximately 400,000 deaths by year, especially in children under 5 years, the search for an effective and safe vaccine, remains to be a challenge for researchers, however before starting the clinical phase studies, preclinical trials in animal models should provide safety and immunogenicity results that lead to effective protective responses. Objective. To review the main characteristics of the immune response and efficacy in pre-clinical studies of candidates for vaccine against malaria by Plasmodium falciparum. Methods. A descriptive review of the main preclinical studies of malaria vaccine candidates, based on subunits, attenuated parasites and multi-stage, multi-epitope vaccines, which have been carried out to evaluate immunogenicity and efficacy, is presented. This review was carried out based on the search of literature in electronic databases specialized in scientific research. 118 documents were found, of which 91 were selected and 17 were excluded because they did not meet the inclusion criteria, for a total of 74 references analyzed. Results. Many candidates for malaria vaccine caused by Plasmodium falciparum have reported promising results against homologous strains, however, given the challenge with heterologous strains, efficacy decreases, on the other hand, the lasting immune and protective response continues to be a key objective, becoming a priority. Conclusions. Preclinical studies in animal models are necessary before advancing to clinical phases, the evaluation of immunogenicity and efficacy is an essential aspect for the evaluation of vaccine candidates.
author Camargo Mancipe, Anny Jineth
Diaz Arévalo, Diana
Salamanca, David Ricardo
Chaparro, Laura Esperanza Cuy
Mancipe, Diego Fernando Camargo
author_facet Camargo Mancipe, Anny Jineth
Diaz Arévalo, Diana
Salamanca, David Ricardo
Chaparro, Laura Esperanza Cuy
Mancipe, Diego Fernando Camargo
topicspa_str_mv malaria
vacunas
inmunogenicidad vacunal
Plasmodium falciparum
eficacia
experimentación animal
topic malaria
vacunas
inmunogenicidad vacunal
Plasmodium falciparum
eficacia
experimentación animal
Plasmodium falciparum
malaria
imunogenicidade vacinal
vaccines
eficácia
experimentação animal
immunogenicity vaccine
Plasmodium falciparum
efficacy
vacinas
Malária
animal experimentation
topic_facet malaria
vacunas
inmunogenicidad vacunal
Plasmodium falciparum
eficacia
experimentación animal
Plasmodium falciparum
malaria
imunogenicidade vacinal
vaccines
eficácia
experimentação animal
immunogenicity vaccine
Plasmodium falciparum
efficacy
vacinas
Malária
animal experimentation
citationvolume 6
citationissue 2
citationedition Núm. 2 , Año 2019 : Revista Investigación en Salud Universidad de Boyacá
publisher Universidad de Boyacá
ispartofjournal Revista Investigación en Salud Universidad de Boyacá
source https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/view/353
language Español
format Article
rights Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
http://creativecommons.org/licenses/by-nc/4.0
Revista Investigación en Salud Universidad de Boyacá - 2019
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references Draper SJ, Sack BK, King CR, Nielsen CM, Rayner JC, Higgins MK, et al. Malaria Vaccines: Recent Advances and New Horizons. Cell Host Microbe. 2018;24:43-56. https://doi.org/10.1016/j.chom.2018.06.008 2. Miller LH, Ackerman HC, Su X, Wellems TE. Malaria biology and disease pathogenesis: insights for new treatments. Nat Med. 2013;19:156-67. https://doi.org/10.1038/nm.3073 3. Howes RE, Battle KE, Mendis KN, Smith DL, Cibulskis RE, Baird JK, et al. Global Epidemiology of Plasmodium vivax. Am J Trop Med Hyg. 2016;95(6 Suppl):15-34. https://doi.org/10.4269/ajtmh.16-0141 4. Phillips MA, Burrows JN, Manyando C, van Huijsduijnen RH, Van Voorhis WC, Wells TNC. Malaria. Nat Rev Dis Primer. 2017;3:23. https://doi.org/10.1038/nrdp.2017.50 5. Cowman AF, Tonkin CJ, Tham W-H, Duraisingh MT. The Molecular Basis of Erythrocyte Invasion by Malaria Parasites. Cell Host Microbe. 2017;22(2):232-245. https://doi.org/10.1016/j.chom.2017.07.003 6. Patarroyo ME, Alba MP, Rojas-Luna R, Bermúdez A, Aza-Conde J. Functionally relevant proteins in Plasmodium falciparum host cell invasion. Immunotherapy. 2017;9:131-55. https://doi.org/10.2217/imt-2016-0091 7. Patarroyo ME, Bermúdez A, Patarroyo MA. Structural and Immunological Principles Leading to Chemically Synthesized, Multiantigenic, Multistage, Minimal Subunit-Based Vaccine Development. Chem Rev. 2011;111(5):3459-507. https://doi.org/10.1021/cr100223m 8. World Health Organization. World malaria report 2018. 2018; 1-210 p. 9. World Health Organization, World Health Organization, Global Malaria Programme. Global technical strategy for malaria, 2016-2030. World Health Organization; 2015. 1-35 p. 10. Goh YS. Mcguire D, Renia L.Vaccination With Sporozoites: Models and Correlates of Protection. Front Immunol. 2019;10:18. https://doi.org/10.3389/fimmu.2019.01227 11. De SL, Stanisic DI, van Breda K, Bellete B, Harris I, McCallum F, et al. Persistence and immunogenicity of chemically attenuated blood stage Plasmodium falciparum in Aotus monkeys. Int J Parasitol. 2016;46:581-91. https://doi.org/10.1016/j.ijpara.2016.05.002 12. Herrera S, Perlaza BL, Bonelo A, Arévalo-Herrera M. Aotus monkeys: their great value for anti-malaria vaccines and drug testing. Int J Parasitol. 2002;32(13):1625-35. https://doi.org/10.1016/s0020-7519(02)00191-1 13. Langhorne J, Buffet P, Galinski M, Good M, Harty J, Leroy D, et al. The relevance of non-human primate and rodent malaria models for humans. Malar J. 2011;10:1-23. https://doi.org/10.1186/1475-2875-10-23 14. Nino-Vasquez JJ, Vogel D, Rodríguez R, Moreno A, Patarroyo ME, Pluschke G, et al. Sequence and diversity of DRB genes of Aotus nancymaae , a primate model for human malaria parasites. Immunogenetics. 2000;51(3):219-30. https://doi.org/10.1007/s002510050035 15. Suárez M. CF, Patarroyo MA, Patarroyo ME. Characterisation and comparative analysis of MHC-DPA1 exon 2 in the owl monkey (Aotus nancymaae). Gene.2011;470(1-2):37-45. https://doi.org/10.1016/j.gene.2010.09.006 16. Cardenas PP, Suárez CF, Martínez P, Patarroyo ME, Patarroyo MA. MHC class I genes in the owl monkey: mosaic organisation, convergence and loci diversity. Immunogenetics. 2005;56(11):818-32. https://doi.org/10.1007/s00251-004-0751-5 17. Baquero JE, Miranda S, Murillo O, Mateus H, Trujillo E, Suárez C, et al. Reference strand conformational analysis (RSCA) is a valuable tool in identifying MHC-DRB sequences in three species of Aotus monkeys. Immunogenetics. 2006;58(7):590-7. https://doi.org/10.1007/s00251-006-0101-x 18. Guerrero JE, Pacheco DP, Suárez CF, Martínez P, Aristizabal F, Moncada CA, et al. Characterizing T-cell receptor gamma-variable gene in Aotus nancymaae owl monkey peripheral blood. Tissue Antigens.2003;62(6):472-82. https://doi.org/10.1046/j.1399-0039.2003.00130.x 19. Jones TR, Obaldia N, Hoffman SL, Gramzinski RA. Repeated infection of Aotus monkeys with Plasmodium falciparum induces protection against subsequent challenge with homologous and heterologous strains of parasite. Am J Trop Med Hyg. 2000;62(6):675-80. https://doi.org/10.4269/ajtmh.2000.62.675 20. Suárez CF, Pabón L, Barrera A, Aza-Conde J, Patarroyo MA, Patarroyo ME. Structural analysis of owl monkey MHC-DR shows that fully-protective malaria vaccine components can be readily used in humans. Biochem Biophys Res Commun. 2017;491(4):1062-9. https://doi.org/10.1016/j.bbrc.2017.08.012 21. Minkah NK, Schafer C, Kappe SHI. Humanized Mouse Models for the Study of Human Malaria Parasite Biology, Pathogenesis, and Immunity. Front Immunol. 2018;1-9. https://doi.org/10.3389/fimmu.2018.00807 22. Nussenzweig RS, Vanderberg J, Most H, Orton C. Protective Immunity produced by the Injection of X-irradiated Sporozoites of Plasmodium berghei. Nature. 1967;216:160-2. https://doi.org/10.1038/216160a0 23. Nussenzweig RS, Vanderberg JP, Most H, Orton C. Specificity of Protective Immunity produced by X-irradiated Plasmodium berghei Sporozoites. Nature.1969;222(5192):488-9. https://doi.org/10.1038/222488a0 24. Vanderberg JP, Nussenzweig RS, Most H, Orton CG. Protective immunity produced by the injection of x-irradiated sporozoites of Plasmodium berghei. II. Effects of radiation on sporozoites. J Parasitol. 1968;54(6):1175-80. https://doi.org/10.2307/3276987 25. Nussenzweig RS, Zavala F. A Malaria Vaccine Based on a Sporozoite Antigen.NEngl J Med.1997;336(2):128-30. https://doi.org/10.1056/NEJM199701093360210 26. Nussenzweig V, Nussenzweig RS. Rationale for the Development of an Engineered Sporozoite Malaria Vaccine. Adv Immunol.1989;45:283-334. https://doi.org/10.1016/s0065-2776(08)60695-1 27. Epstein JE, Tewari K, Lyke KE, Sim BKL, Billingsley PF, Laurens MB, et al. Live Attenuated Malaria Vaccine Designed to Protect Through Hepatic CD8+ T Cell Immunity. Science. 2011;334(6055):475-80. https://doi.org/10.1126/science.1211548 28. Hill AV, Biswas S, Draper S, Rampling T, Reyes-Sandoval A. Towards a multi-antigen multi-stage malaria vaccine. Malar J. 2014;13(S1):O31. . https://doi.org/10.1186/1475-2875-13-S1-O31 29. Tolia NH, Enemark EJ, Sim BKL, Joshua-Tor L. Structural Basis for the EBA-175 Erythrocyte Invasion Pathway of the Malaria Parasite Plasmodium falciparum. Cell. 2005;122(2):183-93. https://doi.org/10.1016/j.cell.2005.05.033 30. Sim BKL, Chitnis CE, Wasniowska K, Millert LH. Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. 1994;264:1941-3. https://doi.org/10.1126/science.8009226 31. Jones TR, Narum DL, Gozalo AS, Aguiar J, Fuhrmann SR, Liang H, et al. Protection of Aotus Monkeys by Plasmodium falciparum EBA‐175 Region II DNA Prime–Protein Boost Immunization Regimen. J Infect Dis. 2001;183(2):303-12. https://doi.org/10.1086/317933 32. Volz JC, Yap A, Sisquella X, Thompson JK, Lim NTY, Whitehead LW, et al. Essential Role of the PfRh5/PfRipr/CyRPA Complex during Plasmodium falciparum Invasion of Erythrocytes. Cell Host Microbe. 2016;20:60-71. https://doi.org/10.1016/j.chom.2016.06.004 33. Tran TM, Ongoiba A, Coursen J, Crosnier C, Diouf A, Huang C-Y, et al. Naturally Acquired Antibodies Specific for Plasmodium falciparum Reticulocyte-Binding Protein Homologue 5 Inhibit Parasite Growth and Predict Protection From Malaria. J Infect Dis. 2014;209:789-98. https://doi.org/10.1093/infdis/jit553 34. Patel SD, Ahouidi AD, Bei AK, Dieye TN, Mboup S, Harrison SC, et al. Plasmodium falciparum Merozoite Surface Antigen, PfRH5, Elicits Detectable Levels of Invasion-Inhibiting Antibodies in Humans. J Infect Dis. 2013;208:1679-87. https://doi.org/10.1093/infdis/jit385 35. Chen L, Xu Y, Healer J, Thompson JK, Smith BJ, Lawrence MC, et al. Crystal structure of PfRh5, an essential P. falciparum ligand for invasion of human erythrocytes. eLife. 2014;3:1-10. https://doi.org/10.7554/eLife.04187.001 36. Sheehy SH, Duncan CJ, Elias SC, Choudhary P, Biswas S, Halstead FD, et al. ChAd63-MVA–vectored Blood-stage Malaria Vaccines Targeting MSP1 and AMA1: Assessment of Efficacy Against Mosquito Bite Challenge in Humans. Mol Ther. 2012;20(12):2355-68. https://doi.org/10.1038/mt.2012.223 37. Draper SJ, Moore AC, Goodman AL, Long CA, Holder AA, Gilbert SC, et al. Effective induction of high-titer antibodies by viral vector vaccines. Nat Med. 2008;14:819-21. https://doi.org/10.1038/nm.1850 38. de Cassan SC, Forbes EK, Douglas AD, Milicic A, Singh B, Gupta P, et al. The Requirement for Potent Adjuvants To Enhance the Immunogenicity and Protective Efficacy of Protein Vaccines Can Be Overcome by Prior Immunization with a Recombinant Adenovirus. J Immunol. 2011;187:2602-16. https://doi.org/10.4049/jimmunol.1101004 39. Douglas AD, Baldeviano GC, Lucas CM, Lugo-Roman LA, Crosnier C, Bartholdson SJ, et al. A PfRH5-Based Vaccine Is Efficacious against Heterologous Strain Blood-Stage Plasmodium falciparum Infection in Aotus Monkeys. Cell Host Microbe. 2015;17:130-9. https://doi.org/10.1016/j.chom.2014.11.017 40. Srinivasan P, Beatty WL, Diouf A, Herrera R, Ambroggio X, Moch JK, et al. Binding of Plasmodium merozoite proteins RON2 and AMA1 triggers commitment to invasion. Proc Natl Acad Sci. 2011;108:13275-80. https://doi.org/10.1073/pnas.1110303108 41. Tyler JS, Boothroyd JC. The C-Terminus of Toxoplasma RON2 Provides the Crucial Link between AMA1 and the Host-Associated Invasion Complex. Soldati-Favre D, editor. PLoS Pathog. 2011;7:1-12. https://doi.org/10.1371/journal.ppat.1001282 42. Mital J, Meissner M, Soldati D, Ward GE. Conditional Expression of Toxoplasma gondii Apical Membrane Antigen-1 (TgAMA1) Demonstrates That TgAMA1 Plays a Critical Role in Host Cell Invasion. Mol Biol Cell. 2005;16(9):4341-9. https://doi.org/10.1091/mbc.e05-04-0281 43. Payne RO, Milne KH, Elias SC, Edwards NJ, Douglas AD, Brown RE, et al. Demonstration of the Blood-Stage Plasmodium falciparum Controlled Human Malaria Infection Model to Assess Efficacy of the P. falciparum Apical Membrane Antigen 1 Vaccine, FMP2.1/AS01. J Infect Dis. 2016;213:1743-51. https://doi.org/10.1093/infdis/jiw039 44. Spring MD, Cummings JF, Ockenhouse CF, Dutta S, Reidler R, Angov E, et al. Phase 1/2a Study of the Malaria Vaccine Candidate Apical Membrane Antigen-1 (AMA-1) Administered in Adjuvant System AS01B or AS02A. Beeson JG, editor. PLoS ONE. 2009;4(4):1-13. https://doi.org/10.1371/journal.pone.0005254 45. Srinivasan P, Baldeviano GC, Miura K, Diouf A, Ventocilla JA, Leiva KP, et al. A malaria vaccine protects Aotus monkeys against virulent Plasmodium falciparum infection. Npj Vaccines. 2017;2(1):1-10. https://doi.org/10.1038/s41541-017-0015-7 46. Burns JM, Miura K, Sullivan J, Long CA, Barnwell JW. Immunogenicity of a chimeric Plasmodium falciparum merozoite surface protein vaccine in Aotus monkeys. Malar J. 2016;1-7. https://doi.org/10.1186/s12936-016-1226-5 47. Bejon P, Lusingu J, Olotu A, Leach A, Lievens M, Vekemans J, et al. Efficacy of RTS,S/AS01E Vaccine against Malaria in Children 5 to 17 Months of Age. N Engl J Med. 2008;359:2521-32. https://doi.org/10.1056/NEJMoa0807381 48. Brian Greenwood. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. The Lancet. 2015;386:60721-8. https://doi.org/10.1016/S0140-6736(15)60721-8 49. Vekemans J, Leach A, Cohen J. Development of the RTS,S/AS malaria candidate vaccine. Vaccine. 2009;27:67-71. https://doi.org/10.1016/j.vaccine.2009.10.013 50. Cohen J, Nussenzweig V, Vekemans J, Leach A. From the circumsporozoite protein to the RTS,S/AS candidate vaccine. Hum Vaccin. 2010;6:90-6. https://doi.org/10.4161/hv.6.1.9677 51. Pichyangkul S, Tongtawe P, Kum-Arb U, Yongvanitchit K, Gettayacamin M, Hollingdale MR, et al. Evaluation of the safety and immunogenicity of Plasmodium falciparum apical membrane antigen 1, merozoite surface protein 1 or RTS,S vaccines with adjuvant system AS02A administered alone or concurrently in rhesus monkeys. Vaccine. 2009;28(2):452-62. https://doi.org/10.1016/j.vaccine.2009.10.022 52. Kester KE, Stewart AV, Walsh DS, Voss G, Tongtawe P, Ballou WR, et al. Safety and immunogenicity of RTS,S + TRAP malaria vaccine, formulated in the AS02A adjuvant system, in infant Rhesus monkeys. Am J Trop Med Hyg. 2004;70:499-509. https://doi.org/10.4269/ajtmh.2004.70.499 53. Kester KE, Cummings JF, Ofori‐Anyinam O, Ockenhouse CF, Krzych U, Moris P, et al. Randomized, Double‐Blind, Phase 2a Trial of Falciparum Malaria Vaccines RTS,S/AS01B and RTS,S/AS02A in Malaria‐Naive Adults: Safety, Efficacy, and Immunologic Associates of Protection. J Infect Dis. 2009;200:337-46. https://doi.org/10.1086/600120 54. Garçon N, Chomez P, Van Mechelen M. GlaxoSmithKline Adjuvant Systems in vaccines: concepts, achievements and perspectives. Expert Rev Vaccines. 2007;6:723-39. https://doi.org/10.1586/14760584.6.5.723 55. Walsh D, Gettayacamin M, Leitner W, Lyon J, Stewart V, Marit G, et al. Heterologous prime-boost immunization in rhesus macaques by two, optimally spaced particle-mediated epidermal deliveries of Plasmodium falciparum circumsporozoite protein-encoding DNA, followed by intramuscular RTS,S/AS02A. Vaccine. 2006;24:4167-78. https://doi.org/10.1016/j.vaccine.2006.02.041 56. Stewart VA, McGrath SM, Dubois PM, Pau MG, Mettens P, Shott J, et al. Priming with an Adenovirus 35-Circumsporozoite Protein (CS) Vaccine followed by RTS,S/AS01B Boosting Significantly Improves Immunogenicity to Plasmodium falciparum CS Compared to That with Either Malaria Vaccine Alone. Infect Immun. 2007;75(5):2283-90. https://doi.org/10.1128/IAI.01879-06 57. Dunachie SJ, Walther M, Vuola JM, Webster DP, Keating SM, Berthoud T, et al. A clinical trial of prime-boost immunisation with the candidate malaria vaccines RTS,S/AS02A and MVA-CS. Vaccine. 2006;(15):2850-9. https://doi: 10.1016/j.vaccine.2005.12.041 58. GwADz RW, Cochrane H, Nussenzweig V, Nussenzweig RS. Preliminary studies on vaccination of rhesus monkeys with irradiated sporozoites of Plasmodium knowlesi and characterization of surface antigens of these parasites. Bull World Health Organ. 1979;165-73. 59. Hoffman SL, Goh LML, Luke TC, Schneider I, Le TP, Doolan DL, et al. Protection of Humans against Malaria by Immunization with Radiation‐Attenuated Plasmodium falciparum Sporozoites. J Infect Dis. 2002;185:1155-64. https://doi.org/10.1086/339409 60. Patarroyo ME, Romero P, Torres ML, Clavijo P, Moreno A, Martínez A et al. Induction of protective immunity against experimental infection with malaria using synthetic peptides. Nature. 1987;328:629-32. https://doi.org/10.1038/328629a0 61. Noya G. O, Berti YG, Noya BA d., Borges R, Zerpa N, Urb ez JD, et al. A Population-Based Clinical Trial with the SPf66 Synthetic Plasmodium falciparum Malaria Vaccine in Venezuela. J Infect Dis. 1994;170:396-402. https://doi.org/10.1093/infdis/170.2.396 62. Sempertegui F, Estrella B, Moscoso J, Piedrahita L, Hernández D, Gaybor J et al. Safety, immunogenicity and protective effect of the SPf66 malaria synthetic vaccine against Plasmodiumfalciparum infection in a randomized double-blind placebo-controlled field trial fin an endemic area of Ecuador. Vaccine. 1994;337-42. https://doi.org/10.1016/0264-410X(94)90098-1 63. Valero M, Amador R, Aponte J, Narvaez A, Galindo C, Silva Y et al. Evaluation of SPf66 malaria vaccine during a 22-month follow-up field trial in the Pacific coast of Colombia. Vaccine. 1996;14:1466-70. https://doi.org/10.1016/S0264-410X(96)00070-9 64. Valero MV, Amador LR, Galindo C, Figueroa J, Bello MS, Murillo LA, et al. Vaccination with SPf66, a chemically synthesised vaccine, against Plasmodium falciparum malaria in Colombia. The Lancet. 1993;341:705-10. https://doi.org/10.1016/0140-6736(93)90483-W 65. Patarroyo ME, Patarroyo MA. Emerging Rules for Subunit-Based, Multiantigenic, Multistage Chemically Synthesized Vaccines. Acc Chem Res. 2008;41:377-86. https://doi.org/10.1021/ar700120t 66. Vaughan AM, Mikolajczak SA, Wilson EM, Grompe M, Kaushansky A, Camargo N, et al. Complete Plasmodium falciparum liver-stage development in liver-chimeric mice. J Clin Invest. 2012;122:3618-28. https://doi.org/10.1172/JCI62684 67. Mikolajczak SA, Vaughan AM, Kangwanrangsan N, Roobsoong W, Fishbaugher M, Yimamnuaychok N, et al. Plasmodium vivax Liver Stage Development and Hypnozoite Persistence in Human Liver-Chimeric Mice. Cell Host Microbe. 2015;17(4):526-35. https://doi.org/10.1016/j.chom.2015.02.011 68. Sack BK, Mikolajczak SA, Fishbaugher M, Vaughan AM, Flannery EL, Nguyen T, et al. Humoral protection against mosquito bite-transmitted Plasmodium falciparum infection in humanized mice. Npj Vaccines. 2017;2(1):1-11. https://doi.org/10.1038/s41541-017-0028-2 69. Weiss GE, Crabb BS, Gilson PR. Overlaying Molecular and Temporal Aspects of Malaria Parasite Invasion. Trends Parasitol. 2016;32(4):284-95. https://doi.org/10.1016/j.pt.2015.12.007 70. Weiss GE, Gilson PR, Taechalertpaisarn T, Tham W-H, de Jong NWM, Harvey KL, et al. Revealing the Sequence and Resulting Cellular Morphology of Receptor-Ligand Interactions during Plasmodium falciparum Invasion of Erythrocytes. Blackman MJ, editor. PLOS Pathog. 2015;11(2):e1004670. https://doi.org/10.1371/journal.ppat.1004670 71. Moser KA, Drábek EF, Dwivedi A, Crabtree J, Stucke EM, Dara A, et al. Strains used in whole organism Plasmodium falciparum vaccine trials differ in genome structure, sequence, and immunogenic potential. Genomics; 2019 https://doi.org/10.1101/684175 72. Lyke KE, Fernández-Viňa MA, Cao K, Hollenbach J, Coulibaly D, Kone AK, et al. Association of HLA alleles with Plasmodium falciparum severity in Malian children. Tissue Antigens. 2011;77(6):562-71. https://doi.org/10.1111/j.1399-0039.2011.01661.x 73. Matern BM, Olieslagers TI, Voorter CEM, Groeneweg M, Tilanus MGJ. Insights into the polymorphism in HLA‐DRA and its evolutionary relationship with HLA Haplotypes. HLA. 2019;95(2):13730. https://doi.org/10.1111/tan.13730 74. La Gruta NL, Gras S, Daley SR, Thomas PG, Rossjohn J. Understanding the drivers of MHC restriction of T cell receptors. Nat Rev Immunol.2018;18(7):467-78. https://doi.org/10.1038/ s41577-018-0007-5
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2019-07-26
date_accessioned 2019-07-26T00:00:00Z
date_available 2019-07-26T00:00:00Z
url https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/view/353
url_doi https://doi.org/10.24267/23897325.353
issn 2389-7325
eissn 2539-2018
doi 10.24267/23897325.353
citationstartpage 200
citationendpage 223
url2_str_mv https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/download/353/494
_version_ 1797159627502125056
spelling Revisión de estudios pre-clínicos de candidatos a vacuna contra la malaria causada por Plasmodium falciparum
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Núm. 2 , Año 2019 : Revista Investigación en Salud Universidad de Boyacá
application/pdf
Universidad de Boyacá
Revista Investigación en Salud Universidad de Boyacá
https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/view/353
Español
http://creativecommons.org/licenses/by-nc/4.0
Revista Investigación en Salud Universidad de Boyacá - 2019
Draper SJ, Sack BK, King CR, Nielsen CM, Rayner JC, Higgins MK, et al. Malaria Vaccines: Recent Advances and New Horizons. Cell Host Microbe. 2018;24:43-56. https://doi.org/10.1016/j.chom.2018.06.008 2. Miller LH, Ackerman HC, Su X, Wellems TE. Malaria biology and disease pathogenesis: insights for new treatments. Nat Med. 2013;19:156-67. https://doi.org/10.1038/nm.3073 3. Howes RE, Battle KE, Mendis KN, Smith DL, Cibulskis RE, Baird JK, et al. Global Epidemiology of Plasmodium vivax. Am J Trop Med Hyg. 2016;95(6 Suppl):15-34. https://doi.org/10.4269/ajtmh.16-0141 4. Phillips MA, Burrows JN, Manyando C, van Huijsduijnen RH, Van Voorhis WC, Wells TNC. Malaria. Nat Rev Dis Primer. 2017;3:23. https://doi.org/10.1038/nrdp.2017.50 5. Cowman AF, Tonkin CJ, Tham W-H, Duraisingh MT. The Molecular Basis of Erythrocyte Invasion by Malaria Parasites. Cell Host Microbe. 2017;22(2):232-245. https://doi.org/10.1016/j.chom.2017.07.003 6. Patarroyo ME, Alba MP, Rojas-Luna R, Bermúdez A, Aza-Conde J. Functionally relevant proteins in Plasmodium falciparum host cell invasion. Immunotherapy. 2017;9:131-55. https://doi.org/10.2217/imt-2016-0091 7. Patarroyo ME, Bermúdez A, Patarroyo MA. Structural and Immunological Principles Leading to Chemically Synthesized, Multiantigenic, Multistage, Minimal Subunit-Based Vaccine Development. Chem Rev. 2011;111(5):3459-507. https://doi.org/10.1021/cr100223m 8. World Health Organization. World malaria report 2018. 2018; 1-210 p. 9. World Health Organization, World Health Organization, Global Malaria Programme. Global technical strategy for malaria, 2016-2030. World Health Organization; 2015. 1-35 p. 10. Goh YS. Mcguire D, Renia L.Vaccination With Sporozoites: Models and Correlates of Protection. Front Immunol. 2019;10:18. https://doi.org/10.3389/fimmu.2019.01227 11. De SL, Stanisic DI, van Breda K, Bellete B, Harris I, McCallum F, et al. Persistence and immunogenicity of chemically attenuated blood stage Plasmodium falciparum in Aotus monkeys. Int J Parasitol. 2016;46:581-91. https://doi.org/10.1016/j.ijpara.2016.05.002 12. Herrera S, Perlaza BL, Bonelo A, Arévalo-Herrera M. Aotus monkeys: their great value for anti-malaria vaccines and drug testing. Int J Parasitol. 2002;32(13):1625-35. https://doi.org/10.1016/s0020-7519(02)00191-1 13. Langhorne J, Buffet P, Galinski M, Good M, Harty J, Leroy D, et al. The relevance of non-human primate and rodent malaria models for humans. Malar J. 2011;10:1-23. https://doi.org/10.1186/1475-2875-10-23 14. Nino-Vasquez JJ, Vogel D, Rodríguez R, Moreno A, Patarroyo ME, Pluschke G, et al. Sequence and diversity of DRB genes of Aotus nancymaae , a primate model for human malaria parasites. Immunogenetics. 2000;51(3):219-30. https://doi.org/10.1007/s002510050035 15. Suárez M. CF, Patarroyo MA, Patarroyo ME. Characterisation and comparative analysis of MHC-DPA1 exon 2 in the owl monkey (Aotus nancymaae). Gene.2011;470(1-2):37-45. https://doi.org/10.1016/j.gene.2010.09.006 16. Cardenas PP, Suárez CF, Martínez P, Patarroyo ME, Patarroyo MA. MHC class I genes in the owl monkey: mosaic organisation, convergence and loci diversity. Immunogenetics. 2005;56(11):818-32. https://doi.org/10.1007/s00251-004-0751-5 17. Baquero JE, Miranda S, Murillo O, Mateus H, Trujillo E, Suárez C, et al. Reference strand conformational analysis (RSCA) is a valuable tool in identifying MHC-DRB sequences in three species of Aotus monkeys. Immunogenetics. 2006;58(7):590-7. https://doi.org/10.1007/s00251-006-0101-x 18. Guerrero JE, Pacheco DP, Suárez CF, Martínez P, Aristizabal F, Moncada CA, et al. Characterizing T-cell receptor gamma-variable gene in Aotus nancymaae owl monkey peripheral blood. Tissue Antigens.2003;62(6):472-82. https://doi.org/10.1046/j.1399-0039.2003.00130.x 19. Jones TR, Obaldia N, Hoffman SL, Gramzinski RA. Repeated infection of Aotus monkeys with Plasmodium falciparum induces protection against subsequent challenge with homologous and heterologous strains of parasite. Am J Trop Med Hyg. 2000;62(6):675-80. https://doi.org/10.4269/ajtmh.2000.62.675 20. Suárez CF, Pabón L, Barrera A, Aza-Conde J, Patarroyo MA, Patarroyo ME. Structural analysis of owl monkey MHC-DR shows that fully-protective malaria vaccine components can be readily used in humans. Biochem Biophys Res Commun. 2017;491(4):1062-9. https://doi.org/10.1016/j.bbrc.2017.08.012 21. Minkah NK, Schafer C, Kappe SHI. Humanized Mouse Models for the Study of Human Malaria Parasite Biology, Pathogenesis, and Immunity. Front Immunol. 2018;1-9. https://doi.org/10.3389/fimmu.2018.00807 22. Nussenzweig RS, Vanderberg J, Most H, Orton C. Protective Immunity produced by the Injection of X-irradiated Sporozoites of Plasmodium berghei. Nature. 1967;216:160-2. https://doi.org/10.1038/216160a0 23. Nussenzweig RS, Vanderberg JP, Most H, Orton C. Specificity of Protective Immunity produced by X-irradiated Plasmodium berghei Sporozoites. Nature.1969;222(5192):488-9. https://doi.org/10.1038/222488a0 24. Vanderberg JP, Nussenzweig RS, Most H, Orton CG. Protective immunity produced by the injection of x-irradiated sporozoites of Plasmodium berghei. II. Effects of radiation on sporozoites. J Parasitol. 1968;54(6):1175-80. https://doi.org/10.2307/3276987 25. Nussenzweig RS, Zavala F. A Malaria Vaccine Based on a Sporozoite Antigen.NEngl J Med.1997;336(2):128-30. https://doi.org/10.1056/NEJM199701093360210 26. Nussenzweig V, Nussenzweig RS. Rationale for the Development of an Engineered Sporozoite Malaria Vaccine. Adv Immunol.1989;45:283-334. https://doi.org/10.1016/s0065-2776(08)60695-1 27. Epstein JE, Tewari K, Lyke KE, Sim BKL, Billingsley PF, Laurens MB, et al. Live Attenuated Malaria Vaccine Designed to Protect Through Hepatic CD8+ T Cell Immunity. Science. 2011;334(6055):475-80. https://doi.org/10.1126/science.1211548 28. Hill AV, Biswas S, Draper S, Rampling T, Reyes-Sandoval A. Towards a multi-antigen multi-stage malaria vaccine. Malar J. 2014;13(S1):O31. . https://doi.org/10.1186/1475-2875-13-S1-O31 29. Tolia NH, Enemark EJ, Sim BKL, Joshua-Tor L. Structural Basis for the EBA-175 Erythrocyte Invasion Pathway of the Malaria Parasite Plasmodium falciparum. Cell. 2005;122(2):183-93. https://doi.org/10.1016/j.cell.2005.05.033 30. Sim BKL, Chitnis CE, Wasniowska K, Millert LH. Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. 1994;264:1941-3. https://doi.org/10.1126/science.8009226 31. Jones TR, Narum DL, Gozalo AS, Aguiar J, Fuhrmann SR, Liang H, et al. Protection of Aotus Monkeys by Plasmodium falciparum EBA‐175 Region II DNA Prime–Protein Boost Immunization Regimen. J Infect Dis. 2001;183(2):303-12. https://doi.org/10.1086/317933 32. Volz JC, Yap A, Sisquella X, Thompson JK, Lim NTY, Whitehead LW, et al. Essential Role of the PfRh5/PfRipr/CyRPA Complex during Plasmodium falciparum Invasion of Erythrocytes. Cell Host Microbe. 2016;20:60-71. https://doi.org/10.1016/j.chom.2016.06.004 33. Tran TM, Ongoiba A, Coursen J, Crosnier C, Diouf A, Huang C-Y, et al. Naturally Acquired Antibodies Specific for Plasmodium falciparum Reticulocyte-Binding Protein Homologue 5 Inhibit Parasite Growth and Predict Protection From Malaria. J Infect Dis. 2014;209:789-98. https://doi.org/10.1093/infdis/jit553 34. Patel SD, Ahouidi AD, Bei AK, Dieye TN, Mboup S, Harrison SC, et al. Plasmodium falciparum Merozoite Surface Antigen, PfRH5, Elicits Detectable Levels of Invasion-Inhibiting Antibodies in Humans. J Infect Dis. 2013;208:1679-87. https://doi.org/10.1093/infdis/jit385 35. Chen L, Xu Y, Healer J, Thompson JK, Smith BJ, Lawrence MC, et al. Crystal structure of PfRh5, an essential P. falciparum ligand for invasion of human erythrocytes. eLife. 2014;3:1-10. https://doi.org/10.7554/eLife.04187.001 36. Sheehy SH, Duncan CJ, Elias SC, Choudhary P, Biswas S, Halstead FD, et al. ChAd63-MVA–vectored Blood-stage Malaria Vaccines Targeting MSP1 and AMA1: Assessment of Efficacy Against Mosquito Bite Challenge in Humans. Mol Ther. 2012;20(12):2355-68. https://doi.org/10.1038/mt.2012.223 37. Draper SJ, Moore AC, Goodman AL, Long CA, Holder AA, Gilbert SC, et al. Effective induction of high-titer antibodies by viral vector vaccines. Nat Med. 2008;14:819-21. https://doi.org/10.1038/nm.1850 38. de Cassan SC, Forbes EK, Douglas AD, Milicic A, Singh B, Gupta P, et al. The Requirement for Potent Adjuvants To Enhance the Immunogenicity and Protective Efficacy of Protein Vaccines Can Be Overcome by Prior Immunization with a Recombinant Adenovirus. J Immunol. 2011;187:2602-16. https://doi.org/10.4049/jimmunol.1101004 39. Douglas AD, Baldeviano GC, Lucas CM, Lugo-Roman LA, Crosnier C, Bartholdson SJ, et al. A PfRH5-Based Vaccine Is Efficacious against Heterologous Strain Blood-Stage Plasmodium falciparum Infection in Aotus Monkeys. Cell Host Microbe. 2015;17:130-9. https://doi.org/10.1016/j.chom.2014.11.017 40. Srinivasan P, Beatty WL, Diouf A, Herrera R, Ambroggio X, Moch JK, et al. Binding of Plasmodium merozoite proteins RON2 and AMA1 triggers commitment to invasion. Proc Natl Acad Sci. 2011;108:13275-80. https://doi.org/10.1073/pnas.1110303108 41. Tyler JS, Boothroyd JC. The C-Terminus of Toxoplasma RON2 Provides the Crucial Link between AMA1 and the Host-Associated Invasion Complex. Soldati-Favre D, editor. PLoS Pathog. 2011;7:1-12. https://doi.org/10.1371/journal.ppat.1001282 42. Mital J, Meissner M, Soldati D, Ward GE. Conditional Expression of Toxoplasma gondii Apical Membrane Antigen-1 (TgAMA1) Demonstrates That TgAMA1 Plays a Critical Role in Host Cell Invasion. Mol Biol Cell. 2005;16(9):4341-9. https://doi.org/10.1091/mbc.e05-04-0281 43. Payne RO, Milne KH, Elias SC, Edwards NJ, Douglas AD, Brown RE, et al. Demonstration of the Blood-Stage Plasmodium falciparum Controlled Human Malaria Infection Model to Assess Efficacy of the P. falciparum Apical Membrane Antigen 1 Vaccine, FMP2.1/AS01. J Infect Dis. 2016;213:1743-51. https://doi.org/10.1093/infdis/jiw039 44. Spring MD, Cummings JF, Ockenhouse CF, Dutta S, Reidler R, Angov E, et al. Phase 1/2a Study of the Malaria Vaccine Candidate Apical Membrane Antigen-1 (AMA-1) Administered in Adjuvant System AS01B or AS02A. Beeson JG, editor. PLoS ONE. 2009;4(4):1-13. https://doi.org/10.1371/journal.pone.0005254 45. Srinivasan P, Baldeviano GC, Miura K, Diouf A, Ventocilla JA, Leiva KP, et al. A malaria vaccine protects Aotus monkeys against virulent Plasmodium falciparum infection. Npj Vaccines. 2017;2(1):1-10. https://doi.org/10.1038/s41541-017-0015-7 46. Burns JM, Miura K, Sullivan J, Long CA, Barnwell JW. Immunogenicity of a chimeric Plasmodium falciparum merozoite surface protein vaccine in Aotus monkeys. Malar J. 2016;1-7. https://doi.org/10.1186/s12936-016-1226-5 47. Bejon P, Lusingu J, Olotu A, Leach A, Lievens M, Vekemans J, et al. Efficacy of RTS,S/AS01E Vaccine against Malaria in Children 5 to 17 Months of Age. N Engl J Med. 2008;359:2521-32. https://doi.org/10.1056/NEJMoa0807381 48. Brian Greenwood. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. The Lancet. 2015;386:60721-8. https://doi.org/10.1016/S0140-6736(15)60721-8 49. Vekemans J, Leach A, Cohen J. Development of the RTS,S/AS malaria candidate vaccine. Vaccine. 2009;27:67-71. https://doi.org/10.1016/j.vaccine.2009.10.013 50. Cohen J, Nussenzweig V, Vekemans J, Leach A. From the circumsporozoite protein to the RTS,S/AS candidate vaccine. Hum Vaccin. 2010;6:90-6. https://doi.org/10.4161/hv.6.1.9677 51. Pichyangkul S, Tongtawe P, Kum-Arb U, Yongvanitchit K, Gettayacamin M, Hollingdale MR, et al. Evaluation of the safety and immunogenicity of Plasmodium falciparum apical membrane antigen 1, merozoite surface protein 1 or RTS,S vaccines with adjuvant system AS02A administered alone or concurrently in rhesus monkeys. Vaccine. 2009;28(2):452-62. https://doi.org/10.1016/j.vaccine.2009.10.022 52. Kester KE, Stewart AV, Walsh DS, Voss G, Tongtawe P, Ballou WR, et al. Safety and immunogenicity of RTS,S + TRAP malaria vaccine, formulated in the AS02A adjuvant system, in infant Rhesus monkeys. Am J Trop Med Hyg. 2004;70:499-509. https://doi.org/10.4269/ajtmh.2004.70.499 53. Kester KE, Cummings JF, Ofori‐Anyinam O, Ockenhouse CF, Krzych U, Moris P, et al. Randomized, Double‐Blind, Phase 2a Trial of Falciparum Malaria Vaccines RTS,S/AS01B and RTS,S/AS02A in Malaria‐Naive Adults: Safety, Efficacy, and Immunologic Associates of Protection. J Infect Dis. 2009;200:337-46. https://doi.org/10.1086/600120 54. Garçon N, Chomez P, Van Mechelen M. GlaxoSmithKline Adjuvant Systems in vaccines: concepts, achievements and perspectives. Expert Rev Vaccines. 2007;6:723-39. https://doi.org/10.1586/14760584.6.5.723 55. Walsh D, Gettayacamin M, Leitner W, Lyon J, Stewart V, Marit G, et al. Heterologous prime-boost immunization in rhesus macaques by two, optimally spaced particle-mediated epidermal deliveries of Plasmodium falciparum circumsporozoite protein-encoding DNA, followed by intramuscular RTS,S/AS02A. Vaccine. 2006;24:4167-78. https://doi.org/10.1016/j.vaccine.2006.02.041 56. Stewart VA, McGrath SM, Dubois PM, Pau MG, Mettens P, Shott J, et al. Priming with an Adenovirus 35-Circumsporozoite Protein (CS) Vaccine followed by RTS,S/AS01B Boosting Significantly Improves Immunogenicity to Plasmodium falciparum CS Compared to That with Either Malaria Vaccine Alone. Infect Immun. 2007;75(5):2283-90. https://doi.org/10.1128/IAI.01879-06 57. Dunachie SJ, Walther M, Vuola JM, Webster DP, Keating SM, Berthoud T, et al. A clinical trial of prime-boost immunisation with the candidate malaria vaccines RTS,S/AS02A and MVA-CS. Vaccine. 2006;(15):2850-9. https://doi: 10.1016/j.vaccine.2005.12.041 58. GwADz RW, Cochrane H, Nussenzweig V, Nussenzweig RS. Preliminary studies on vaccination of rhesus monkeys with irradiated sporozoites of Plasmodium knowlesi and characterization of surface antigens of these parasites. Bull World Health Organ. 1979;165-73. 59. Hoffman SL, Goh LML, Luke TC, Schneider I, Le TP, Doolan DL, et al. Protection of Humans against Malaria by Immunization with Radiation‐Attenuated Plasmodium falciparum Sporozoites. J Infect Dis. 2002;185:1155-64. https://doi.org/10.1086/339409 60. Patarroyo ME, Romero P, Torres ML, Clavijo P, Moreno A, Martínez A et al. Induction of protective immunity against experimental infection with malaria using synthetic peptides. Nature. 1987;328:629-32. https://doi.org/10.1038/328629a0 61. Noya G. O, Berti YG, Noya BA d., Borges R, Zerpa N, Urb ez JD, et al. A Population-Based Clinical Trial with the SPf66 Synthetic Plasmodium falciparum Malaria Vaccine in Venezuela. J Infect Dis. 1994;170:396-402. https://doi.org/10.1093/infdis/170.2.396 62. Sempertegui F, Estrella B, Moscoso J, Piedrahita L, Hernández D, Gaybor J et al. Safety, immunogenicity and protective effect of the SPf66 malaria synthetic vaccine against Plasmodiumfalciparum infection in a randomized double-blind placebo-controlled field trial fin an endemic area of Ecuador. Vaccine. 1994;337-42. https://doi.org/10.1016/0264-410X(94)90098-1 63. Valero M, Amador R, Aponte J, Narvaez A, Galindo C, Silva Y et al. Evaluation of SPf66 malaria vaccine during a 22-month follow-up field trial in the Pacific coast of Colombia. Vaccine. 1996;14:1466-70. https://doi.org/10.1016/S0264-410X(96)00070-9 64. Valero MV, Amador LR, Galindo C, Figueroa J, Bello MS, Murillo LA, et al. Vaccination with SPf66, a chemically synthesised vaccine, against Plasmodium falciparum malaria in Colombia. The Lancet. 1993;341:705-10. https://doi.org/10.1016/0140-6736(93)90483-W 65. Patarroyo ME, Patarroyo MA. Emerging Rules for Subunit-Based, Multiantigenic, Multistage Chemically Synthesized Vaccines. Acc Chem Res. 2008;41:377-86. https://doi.org/10.1021/ar700120t 66. Vaughan AM, Mikolajczak SA, Wilson EM, Grompe M, Kaushansky A, Camargo N, et al. Complete Plasmodium falciparum liver-stage development in liver-chimeric mice. J Clin Invest. 2012;122:3618-28. https://doi.org/10.1172/JCI62684 67. Mikolajczak SA, Vaughan AM, Kangwanrangsan N, Roobsoong W, Fishbaugher M, Yimamnuaychok N, et al. Plasmodium vivax Liver Stage Development and Hypnozoite Persistence in Human Liver-Chimeric Mice. Cell Host Microbe. 2015;17(4):526-35. https://doi.org/10.1016/j.chom.2015.02.011 68. Sack BK, Mikolajczak SA, Fishbaugher M, Vaughan AM, Flannery EL, Nguyen T, et al. Humoral protection against mosquito bite-transmitted Plasmodium falciparum infection in humanized mice. Npj Vaccines. 2017;2(1):1-11. https://doi.org/10.1038/s41541-017-0028-2 69. Weiss GE, Crabb BS, Gilson PR. Overlaying Molecular and Temporal Aspects of Malaria Parasite Invasion. Trends Parasitol. 2016;32(4):284-95. https://doi.org/10.1016/j.pt.2015.12.007 70. Weiss GE, Gilson PR, Taechalertpaisarn T, Tham W-H, de Jong NWM, Harvey KL, et al. Revealing the Sequence and Resulting Cellular Morphology of Receptor-Ligand Interactions during Plasmodium falciparum Invasion of Erythrocytes. Blackman MJ, editor. PLOS Pathog. 2015;11(2):e1004670. https://doi.org/10.1371/journal.ppat.1004670 71. Moser KA, Drábek EF, Dwivedi A, Crabtree J, Stucke EM, Dara A, et al. Strains used in whole organism Plasmodium falciparum vaccine trials differ in genome structure, sequence, and immunogenic potential. Genomics; 2019 https://doi.org/10.1101/684175 72. Lyke KE, Fernández-Viňa MA, Cao K, Hollenbach J, Coulibaly D, Kone AK, et al. Association of HLA alleles with Plasmodium falciparum severity in Malian children. Tissue Antigens. 2011;77(6):562-71. https://doi.org/10.1111/j.1399-0039.2011.01661.x 73. Matern BM, Olieslagers TI, Voorter CEM, Groeneweg M, Tilanus MGJ. Insights into the polymorphism in HLA‐DRA and its evolutionary relationship with HLA Haplotypes. HLA. 2019;95(2):13730. https://doi.org/10.1111/tan.13730 74. La Gruta NL, Gras S, Daley SR, Thomas PG, Rossjohn J. Understanding the drivers of MHC restriction of T cell receptors. Nat Rev Immunol.2018;18(7):467-78. https://doi.org/10.1038/ s41577-018-0007-5
6
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_dcae04bc
http://purl.org/redcol/resource_type/ARTREV
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
2
Artículo de revista
Publication
Introducción. La malaria es una enfermedad que causa aproximadamente 400.000 muertes al año, especialmente en niños menores de 5 años; la búsqueda de una vacuna eficaz y segura sigue siendo un reto para los investigadores, sin embargo, antes de iniciar los estudios de fase clínica, los ensayos preclínicos en modelo animal deben brindar resultados de seguridad e inmunogenicidad que lleven a respuestas eficaces de protección. Objetivo. Revisar las principales características de la respuesta inmunológica y eficacia en estudios pre-clínicos de candidatos a vacuna contra la malaria por Plasmodium falciparum. Métodos. Revisión descriptiva de los principales estudios preclínicos de candidatos a vacuna contra la malaria, basados en subunidades, parásitos atenuados y vacunas multi-estadio, multi-epitope, que se han realizado para evaluar inmunogenicidad  y eficacia en modelo animal. Esta revisión se llevó a cabo a partir de la búsqueda de literatura en bases de datos electrónicas especializadas en investigación científica. Se encontraron 118 documentos, de los cuales se seleccionaron 91 y se excluyeron 17 por no cumplir con los criterios de inclusión, para un total de 74 referencias analizadas. Resultados. Muchos candidatos a vacuna contra la malaria causada por Plasmodium falciparum han reportado resultados prometedores contra cepas homologas, sin embargo, ante el reto con cepas heterólogas la eficacia disminuye, por otra parte, la respuesta inmune y protectiva duradera continúa siendo un objetivo clave, convirtiéndose en una prioridad. Conclusiones. Los estudios preclínicos en modelo animal son necesarios antes de avanzar a fases clínicas, la evaluación de inmunogenicidad y eficacia es un aspecto esencial para la evaluación de candidatos a vacuna.
Camargo Mancipe, Anny Jineth
Diaz Arévalo, Diana
Salamanca, David Ricardo
Chaparro, Laura Esperanza Cuy
Mancipe, Diego Fernando Camargo
malaria
vacunas
inmunogenicidad vacunal
Plasmodium falciparum
eficacia
experimentación animal
Plasmodium falciparum
Introduction. Malaria disease causes approximately 400,000 deaths by year, especially in children under 5 years, the search for an effective and safe vaccine, remains to be a challenge for researchers, however before starting the clinical phase studies, preclinical trials in animal models should provide safety and immunogenicity results that lead to effective protective responses. Objective. To review the main characteristics of the immune response and efficacy in pre-clinical studies of candidates for vaccine against malaria by Plasmodium falciparum. Methods. A descriptive review of the main preclinical studies of malaria vaccine candidates, based on subunits, attenuated parasites and multi-stage, multi-epitope vaccines, which have been carried out to evaluate immunogenicity and efficacy, is presented. This review was carried out based on the search of literature in electronic databases specialized in scientific research. 118 documents were found, of which 91 were selected and 17 were excluded because they did not meet the inclusion criteria, for a total of 74 references analyzed. Results. Many candidates for malaria vaccine caused by Plasmodium falciparum have reported promising results against homologous strains, however, given the challenge with heterologous strains, efficacy decreases, on the other hand, the lasting immune and protective response continues to be a key objective, becoming a priority. Conclusions. Preclinical studies in animal models are necessary before advancing to clinical phases, the evaluation of immunogenicity and efficacy is an essential aspect for the evaluation of vaccine candidates.
malaria
imunogenicidade vacinal
vaccines
Journal article
eficácia
experimentação animal
immunogenicity vaccine
Plasmodium falciparum
efficacy
vacinas
Malária
animal experimentation
Review of preclinical studies of candidates for malaria vaccine caused by Plasmodium falciparum
https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/download/353/494
2019-07-26T00:00:00Z
2019-07-26T00:00:00Z
10.24267/23897325.353
2019-07-26
223
200
2389-7325
2539-2018
https://doi.org/10.24267/23897325.353