Estudio dinámico de adsorción de Ni (II) sobre residuos de Musa aab simmonds

Se estudió la dinámica de adsorción de Ni (II) a partir de la torta residual del proceso de extracción de almidón de plátano en columna de lecho fijo variando la temperatura y altura de lecho. La biomasa se caracterizó por análisis elemental y FTIR. La concentración final del ion en solución se determinó por espectrofotometría de absorción atómica. Se encontró que los grupos funcionales hidroxilos y carboxilos son los de mayor protagonismo en la retención del ion. Del análisis ANOVA se determinó que las variables estudiadas en la remoción del Ni (II) no presentan efectos significativos sobre el mismo. De la curva de ruptura se encontró que la capacidad de adsorción máxima de la columna fue de 18.72 mg/g. El modelo de Dosis de Respuesta es e... Ver más

Guardado en:

1794-1237

2463-0950

19

2022-06-01

3819 pp. 1

17

http://purl.org/coar/access_right/c_abf2

info:eu-repo/semantics/openAccess

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Revista EIA - 2022

id bf9087ade2600076ddbc4fef65a3b1f4
record_format ojs
spelling Estudio dinámico de adsorción de Ni (II) sobre residuos de Musa aab simmonds
Liao, B.; Sun, W. yi; Guo, N.; Ding, S. lan; & Su, S. jun. (2016). Equilibriums and kinetics studies for adsorption of Ni(II) ion on chitosan and its triethylenetetramine derivative. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 501, 32–41. https://doi.org/10.1016/j.colsurfa.2016.04.043
Moscatello, N.; Swayambhu, G.; Jones, C. H.; Xu, J.; Dai, N.; & Pfeifer, B. A. (2018). Continuous removal of copper, magnesium, and nickel from industrial wastewater utilizing the natural product yersiniabactin immobilized within a packed-bed column. Chemical Engineering Journal, 343, 173–179. https://doi.org/10.1016/j.cej.2018.02.093
Moino, B. P.; Costa, C. S. D.; da Silva, M. G. C.; & Vieira, M. G. A. (2017). Removal of nickel ions on residue of alginate extraction from Sargassum filipendula seaweed in packed bed. Canadian Journal of Chemical Engineering, 95(11), 2120–2128. https://doi.org/10.1002/cjce.22859
Mishra, A.; Dutt, B.; & Kumar, A. (2016). Packed-bed column biosorption of chromium (VI) and nickel (II) onto Fenton modified Hydrilla verticillata dried biomass. Ecotoxicology and Environmental Safety, 132, 420–428. https://doi.org/10.1016/j.ecoenv.2016.06.026
Meneguin, J. G.; Moisés, M. P.; Karchiyappan, T.; Faria, S. H. B.; Gimenes, M. L.; de Barros, M. A. S. D.; & Venkatachalam, S. (2017). Preparation and characterization of calcium treated bentonite clay and its application for the removal of lead and cadmium ions: Adsorption and thermodynamic modeling. Process Safety and Environmental Protection, 111, 244–252. https://doi.org/10.1016/j.psep.2017.07.005
Martín-Lara, M. Á.; Trujillo Miranda, M. C.; Ronda, A.; Pérez Muñoz, A.; & Calero de Hoces, M. (2017). Valorization of olive stone as adsorbent of chromium(VI): comparison between laboratory- and pilot-scale fixed-bed columns. International Journal of Environmental Science and Technology, 14(12), 2661–2674. https://doi.org/10.1007/s13762-017-1345-8
Maniglia, B. C.; & Tapia-bl, D. R. (2016). Food Hydrocolloids Isolation and characterization of starch from babassu mesocarp. 55, 47–55. https://doi.org/https://doi.org/10.1016/j.foodhyd.2015.11.001
Mahmood-Ul-Hassan, M.; Yasin, M.; Yousra, M.; Ahmad, R.; & Sarwar, S. (2018). Kinetics, isotherms, and thermodynamic studies of lead, chromium, and cadmium bio-adsorption from aqueous solution onto Picea smithiana sawdust. Environmental Science and Pollution Research, 25(13), 12570–12578. https://doi.org/10.1007/s11356-018-1300-3
Li, W.; Yan, J.; Yan, Z.; Song, Y.; Jiao, W.; Qi, G.; & Liu, Y. (2018). Adsorption of phenol by activated carbon in rotating packed bed: Experiment and modeling. Applied Thermal Engineering, 142, 760–766. https://doi.org/10.1016/j.applthermaleng.2018.07.051
Romero-Cano, L. A.; García-Rosero, H.; Gonzalez-Gutierrez, L. V.; Baldenegro-Pérez, L. A.; & Carrasco-Marín, F. (2017). Functionalized adsorbents prepared from fruit peels: Equilibrium, kinetic and thermodynamic studies for copper adsorption in aqueous solution. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2017.06.032
Jafari, S. A.; & Jamali, A. (2016). Continuous cadmium removal from aqueous solutions by seaweed in a packed-bed column under consecutive sorption-desorption cycles. Korean Journal of Chemical Engineering, 33(4), 1296–1304. https://doi.org/10.1007/s11814-015-0261-1
Hokkanen, S.; Bhatnagar, A.; & Sillanpää, M. (2016). A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Research, 91, 156–173. https://doi.org/https://doi.org/10.1016/j.watres.2016.01.008
Herrera-Barros, A.; Bitar-Castro, N.; Villabona-Ortíz, Á.; Tejada-Tovar, C.; & González-Delgado, Á. D. (2020). Nickel adsorption from aqueous solution using lemon peel biomass chemically modified with TiO2 nanoparticles. Sustainable Chemistry and Pharmacy, 17, 100299. https://doi.org/10.1016/j.scp.2020.100299
Gómez, V. E.; Herrera, A. P.; & Sánchez, J. H. (2019). Removal of acetylsalicylic acid (Asa) in packed microcolumns with carbon xerogel modified with TiO2 nanoparticles. Ingenieria e Investigacion, 39(2), 11–20. https://doi.org/https://doi.org/10.15446/ing.investig.v39n2.67604
Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M. S.; & Catalano, A. (2020). Nickel: Human health and environmental toxicology. In International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph17030679
Chao, H. P.; Chang, C. C.; & Nieva, A. (2014). Biosorption of heavy metals on Citrus maxima peel, passion fruit shell, and sugarcane bagasse in a fixed-bed column. Journal of Industrial and Engineering Chemistry, 20(5), 3408–3414. https://doi.org/10.1016/j.jiec.2013.12.027
Butler, L.; Lall, U.; & Bonnafous, L. (2017). Cumulative heavy metal contamination in mining areas of the Rimac, Peru basin (pp. 1–27). http://water.columbia.edu/files/2018/01/13.2017.Butler.Draft_.Cumulative-heavy-metal-contamination-in-mining-areas.pdf
Boucherdoud, A.; Kherroub, D. E.; Bestani, B.; Benderdouche, N.; Douinat, O.; & History, A. (2021). Fixed-bed adsorption dynamics of methylene blue from aqueous solution using alginate-activated carbon composites adsorbents ARTICLE INFO ABSTRACT/RESUME. Algerian Journal of Environmental Science and Technology Month Edition, 0(0). www.aljest.org
Ratan, S.; Singh, I.; Sarkar, J.; & Rm, N. (2016). The Removal of Nickel from Waste Water by Modified Coconut Coir Pith. Chemical Sciences Journal, 7(3), 1–6. https://doi.org/10.4172/2150-3494.1000136
Saadat, S.; Hekmatzadeh, A. A.; & Karimi Jashni, A. (2016). Mathematical modeling of the Ni(II) removal from aqueous solutions onto pre-treated rice husk in fixed-bed columns: a comparison. Desalination and Water Treatment, 57(36), 16907–16918. https://doi.org/10.1080/19443994.2015.1087877
Barquilha, C. E. R.; Cossich, E. S.; Tavares, C. R. G.; & Silva, E. A. (2017). Biosorption of nickel(II) and copper(II) ions in batch and fixed-bed columns by free and immobilized marine algae Sargassum sp. Journal of Cleaner Production, 150, 58–64. https://doi.org/10.1016/j.jclepro.2017.02.199
http://purl.org/coar/resource_type/c_6501
Text
http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/publishedVersion
http://purl.org/redcol/resource_type/ART
http://purl.org/coar/resource_type/c_2df8fbb1
info:eu-repo/semantics/article
Singh, S.; & Shukla, S. R. (2017). Theoretical studies on adsorption of Ni(II) from aqueous solution using Citrus limetta peels. Environmental Progress and Sustainable Energy. https://doi.org/10.1002/ep.12526
Villabona-Ortíz, A.; Tejada-Tovar, C.; González-Delgado, Á. D.; Herrera-Barros, A.; & Cantillo-Arroyo, G. (2019). Immobilization of Lead and Nickel Ions from Polluted Yam Peels Biomass Using Cement-Based Solidification/Stabilization Technique. International Journal of Chemical Engineering, 2019. https://doi.org/https://doi.org/10.1155/2019/5413960
Valencia, J. A. R.; González, J. P.; Jimenez-Pitre, I.; & Molina-Bolívar, G. (2019). Physico-chemical treatment of waste water contaminated with heavy metals in the industry of metallic coatings. Journal of Water and Land Development, 43(1), 171–176. https://doi.org/10.2478/jwld-2019-0075
Tejada-Tovar, C. N.; Villabona-Ortíz, A.; & Ortega-Toro, R. (2020). Cr(VI) biosorption: Effect of temperature,particle size and bed height. Revista Facultad de Ingenieria, 96, 78–86. https://doi.org/10.17533/udea.redin.20191149
Tejada-Tovar, C.; Gallo-Mercado, J.; Moscote, J.; Villabona-Ortíz, A.; & Acevedo-Correra, D. (2018). Competitive adsorption of lead and nickel ont yam husk and palm bagasse in continuous system. Revista Biotecnología En El Sector Agropecuario y Agroindustrial, 16(1), 52–61. https://doi.org/http://dx.doi.org/10.18684/bsaa.v16n1.624
Šuránek, M.; Melichová, Z.; Kureková, V.; Kljajević, L.; & Nenadović, S. (2021). Removal of Nickel from Aqueous Solutions by Natural Bentonites from Slovakia. Materials, 14(2), 282. https://doi.org/10.3390/ma14020282
Sreenivas, K. M.; Inarkar, M. B.; Gokhale, S. V.; & Lele, S. S. (2014). Re-utilization of ash gourd (Benincasa hispida) peel waste for chromium (VI) biosorption: Equilibrium and column studies. Journal of Environmental Chemical Engineering, 2(1), 455–462. https://doi.org/10.1016/j.jece.2014.01.017
Šoštarić, T. D.; Petrović, M. S.; Pastor, F. T.; Lončarević, D. R.; Petrović, J. T.; Milojković, J. V.; & Stojanović, M. D. (2018). Study of heavy metals biosorption on native and alkali-treated apricot shells and its application in wastewater treatment. Journal of Molecular Liquids, 259, 340–349. https://doi.org/10.1016/j.molliq.2018.03.055
Sivarajasekar, N.; Mohanraj, N.; Baskar, R.; & Sivamani, S. (2018). Fixed-Bed Adsorption of Ranitidine Hydrochloride Onto Microwave Assisted—Activated Aegle marmelos Correa Fruit Shell: Statistical Optimization and Breakthrough Modelling. Arabian Journal for Science and Engineering, 43(5), 2205–2215. https://doi.org/10.1007/s13369-017-2565-4
Bibaj, E.; Lysigaki, K.; Nolan, J. W.; Seyedsalehi, M.; Deliyanni, E. A.; Mitropoulos, A. C.; & Kyzas, G. Z. (2019). Activated carbons from banana peels for the removal of nickel ions. International Journal of Environmental Science and Technology, 16(2), 667–680. https://doi.org/10.1007/s13762-018-1676-0
Azimi, A.; Azari, A.; Rezakazemi, M.; & Ansarpour, M. (2017). Removal of heavy metals from industrial wastewaters: A Review. ChemBioEng Reviews, 4(1), 37–59. https://doi.org/10.1002/cben.201600010
Azadi, F.; Saadat, S.; & Karimi-Jashni, A. (2018). Experimental Investigation and Modeling of Nickel Removal from Wastewater Using Modified Rice Husk in Continuous Reactor by Response Surface Methodology. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 42(3), 315–323. https://doi.org/10.1007/s40996-017-0090-z
application/pdf
Se estudió la dinámica de adsorción de Ni (II) a partir de la torta residual del proceso de extracción de almidón de plátano en columna de lecho fijo variando la temperatura y altura de lecho. La biomasa se caracterizó por análisis elemental y FTIR. La concentración final del ion en solución se determinó por espectrofotometría de absorción atómica. Se encontró que los grupos funcionales hidroxilos y carboxilos son los de mayor protagonismo en la retención del ion. Del análisis ANOVA se determinó que las variables estudiadas en la remoción del Ni (II) no presentan efectos significativos sobre el mismo. De la curva de ruptura se encontró que la capacidad de adsorción máxima de la columna fue de 18.72 mg/g. El modelo de Dosis de Respuesta es el que mejor describe el proceso de adsorción, concluyendo que la torta residual utilizada es una alternativa de bajo costo muy eficiente en la remoción de Ni (II) a condiciones ambientales.
Tejada Tovar, Candelaria Nahir
Ruiz Paternina, Érika
Villabona Ortíz, Angel
Frías González, Jesús David
Blanco García, Gerlyn
Adsorción continua
curva de ruptura
metal pesado
torta residual
19
38
Núm. 38 , Año 2022 : .
Artículo de revista
Publication
Fondo Editorial EIA - Universidad EIA
Revista EIA
Altino, H. O. N.; Costa, B. E. S.; & Da Cunha, R. N. (2017). Biosorption optimization of Ni(II) ions on Macauba (Acrocomia aculeata) oil extraction residue using fixed-bed column. Journal of Environmental Chemical Engineering, 5(5), 4895–4905. https://doi.org/10.1016/j.jece.2017.09.025
Abdolali, A.; Ngo, H. H.; Guo, W.; Zhou, J. L.; Zhang, J.; Liang, S.; Chang, S. W.; Nguyen, D. D.; & Liu, Y. (2017). Application of a breakthrough biosorbent for removing heavy metals from synthetic and real wastewaters in a lab-scale continuous fixed-bed column. Bioresource Technology. https://doi.org/10.1016/j.biortech.2017.01.016
Abbas, A.; Hussain, M. A.; Sher, M.; Irfan, M. I.; Tahir, M. N.; Tremel, W.; Hussain, S. Z.; & Hussain, I. (2017). Design, characterization and evaluation of hydroxyethylcellulose based novel regenerable supersorbent for heavy metal ions uptake and competitive adsorption. International Journal of Biological Macromolecules, 102, 170–180. https://doi.org/10.1016/j.ijbiomac.2017.04.024
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Revista EIA - 2022
https://revistas.eia.edu.co/index.php/reveia/article/view/1537
https://creativecommons.org/licenses/by-nc-nd/4.0
Español
The Ni (II) adsorption dynamics was studied from the residual cake of the starch extraction process of plantain in a fixed bed column varying the temperature and bed height. The biomass was characterized by elemental analysis and FTIR. The final concentration of the ion was determined by atomic absorption spectrophotometry. It was found that the hydroxyl and carboxyl groups present in the biomass are the main protagonists in the adsorption of the heavy metal ion. From ANOVA it was determined that the studied variables do not have significant effects on the process. The breakthrough curve a maximum capacity achieved was 18.72 mg/g. The response-dose model fitted better the whole dynamic behavior of the continuous adsorption of Ni (II) rather than the others, concluding that the residual cake used is a low cost alternative very efficient in the removal of Ni (II) at room temperature.
continuous adsorption
breakthrough curve
heavy metal
residual cake
Dynamic study of NI (II) adsorption onto Musa aab simmonds residue.
Journal article
https://doi.org/10.24050/reia.v19i38.1537
https://revistas.eia.edu.co/index.php/reveia/article/download/1537/1489
10.24050/reia.v19i38.1537
2463-0950
1794-1237
3819 pp. 1
17
2022-06-01 00:00:00
2022-06-01 00:00:00
2022-06-01
institution UNIVERSIDAD EIA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADEIA/logo.png
country_str Colombia
collection Revista EIA
title Estudio dinámico de adsorción de Ni (II) sobre residuos de Musa aab simmonds
spellingShingle Estudio dinámico de adsorción de Ni (II) sobre residuos de Musa aab simmonds
Tejada Tovar, Candelaria Nahir
Ruiz Paternina, Érika
Villabona Ortíz, Angel
Frías González, Jesús David
Blanco García, Gerlyn
Adsorción continua
curva de ruptura
metal pesado
torta residual
continuous adsorption
breakthrough curve
heavy metal
residual cake
title_short Estudio dinámico de adsorción de Ni (II) sobre residuos de Musa aab simmonds
title_full Estudio dinámico de adsorción de Ni (II) sobre residuos de Musa aab simmonds
title_fullStr Estudio dinámico de adsorción de Ni (II) sobre residuos de Musa aab simmonds
title_full_unstemmed Estudio dinámico de adsorción de Ni (II) sobre residuos de Musa aab simmonds
title_sort estudio dinámico de adsorción de ni (ii) sobre residuos de musa aab simmonds
title_eng Dynamic study of NI (II) adsorption onto Musa aab simmonds residue.
description Se estudió la dinámica de adsorción de Ni (II) a partir de la torta residual del proceso de extracción de almidón de plátano en columna de lecho fijo variando la temperatura y altura de lecho. La biomasa se caracterizó por análisis elemental y FTIR. La concentración final del ion en solución se determinó por espectrofotometría de absorción atómica. Se encontró que los grupos funcionales hidroxilos y carboxilos son los de mayor protagonismo en la retención del ion. Del análisis ANOVA se determinó que las variables estudiadas en la remoción del Ni (II) no presentan efectos significativos sobre el mismo. De la curva de ruptura se encontró que la capacidad de adsorción máxima de la columna fue de 18.72 mg/g. El modelo de Dosis de Respuesta es el que mejor describe el proceso de adsorción, concluyendo que la torta residual utilizada es una alternativa de bajo costo muy eficiente en la remoción de Ni (II) a condiciones ambientales.
description_eng The Ni (II) adsorption dynamics was studied from the residual cake of the starch extraction process of plantain in a fixed bed column varying the temperature and bed height. The biomass was characterized by elemental analysis and FTIR. The final concentration of the ion was determined by atomic absorption spectrophotometry. It was found that the hydroxyl and carboxyl groups present in the biomass are the main protagonists in the adsorption of the heavy metal ion. From ANOVA it was determined that the studied variables do not have significant effects on the process. The breakthrough curve a maximum capacity achieved was 18.72 mg/g. The response-dose model fitted better the whole dynamic behavior of the continuous adsorption of Ni (II) rather than the others, concluding that the residual cake used is a low cost alternative very efficient in the removal of Ni (II) at room temperature.
author Tejada Tovar, Candelaria Nahir
Ruiz Paternina, Érika
Villabona Ortíz, Angel
Frías González, Jesús David
Blanco García, Gerlyn
author_facet Tejada Tovar, Candelaria Nahir
Ruiz Paternina, Érika
Villabona Ortíz, Angel
Frías González, Jesús David
Blanco García, Gerlyn
topicspa_str_mv Adsorción continua
curva de ruptura
metal pesado
torta residual
topic Adsorción continua
curva de ruptura
metal pesado
torta residual
continuous adsorption
breakthrough curve
heavy metal
residual cake
topic_facet Adsorción continua
curva de ruptura
metal pesado
torta residual
continuous adsorption
breakthrough curve
heavy metal
residual cake
citationvolume 19
citationissue 38
citationedition Núm. 38 , Año 2022 : .
publisher Fondo Editorial EIA - Universidad EIA
ispartofjournal Revista EIA
source https://revistas.eia.edu.co/index.php/reveia/article/view/1537
language Español
format Article
rights http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Revista EIA - 2022
https://creativecommons.org/licenses/by-nc-nd/4.0
references Liao, B.; Sun, W. yi; Guo, N.; Ding, S. lan; & Su, S. jun. (2016). Equilibriums and kinetics studies for adsorption of Ni(II) ion on chitosan and its triethylenetetramine derivative. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 501, 32–41. https://doi.org/10.1016/j.colsurfa.2016.04.043
Moscatello, N.; Swayambhu, G.; Jones, C. H.; Xu, J.; Dai, N.; & Pfeifer, B. A. (2018). Continuous removal of copper, magnesium, and nickel from industrial wastewater utilizing the natural product yersiniabactin immobilized within a packed-bed column. Chemical Engineering Journal, 343, 173–179. https://doi.org/10.1016/j.cej.2018.02.093
Moino, B. P.; Costa, C. S. D.; da Silva, M. G. C.; & Vieira, M. G. A. (2017). Removal of nickel ions on residue of alginate extraction from Sargassum filipendula seaweed in packed bed. Canadian Journal of Chemical Engineering, 95(11), 2120–2128. https://doi.org/10.1002/cjce.22859
Mishra, A.; Dutt, B.; & Kumar, A. (2016). Packed-bed column biosorption of chromium (VI) and nickel (II) onto Fenton modified Hydrilla verticillata dried biomass. Ecotoxicology and Environmental Safety, 132, 420–428. https://doi.org/10.1016/j.ecoenv.2016.06.026
Meneguin, J. G.; Moisés, M. P.; Karchiyappan, T.; Faria, S. H. B.; Gimenes, M. L.; de Barros, M. A. S. D.; & Venkatachalam, S. (2017). Preparation and characterization of calcium treated bentonite clay and its application for the removal of lead and cadmium ions: Adsorption and thermodynamic modeling. Process Safety and Environmental Protection, 111, 244–252. https://doi.org/10.1016/j.psep.2017.07.005
Martín-Lara, M. Á.; Trujillo Miranda, M. C.; Ronda, A.; Pérez Muñoz, A.; & Calero de Hoces, M. (2017). Valorization of olive stone as adsorbent of chromium(VI): comparison between laboratory- and pilot-scale fixed-bed columns. International Journal of Environmental Science and Technology, 14(12), 2661–2674. https://doi.org/10.1007/s13762-017-1345-8
Maniglia, B. C.; & Tapia-bl, D. R. (2016). Food Hydrocolloids Isolation and characterization of starch from babassu mesocarp. 55, 47–55. https://doi.org/https://doi.org/10.1016/j.foodhyd.2015.11.001
Mahmood-Ul-Hassan, M.; Yasin, M.; Yousra, M.; Ahmad, R.; & Sarwar, S. (2018). Kinetics, isotherms, and thermodynamic studies of lead, chromium, and cadmium bio-adsorption from aqueous solution onto Picea smithiana sawdust. Environmental Science and Pollution Research, 25(13), 12570–12578. https://doi.org/10.1007/s11356-018-1300-3
Li, W.; Yan, J.; Yan, Z.; Song, Y.; Jiao, W.; Qi, G.; & Liu, Y. (2018). Adsorption of phenol by activated carbon in rotating packed bed: Experiment and modeling. Applied Thermal Engineering, 142, 760–766. https://doi.org/10.1016/j.applthermaleng.2018.07.051
Romero-Cano, L. A.; García-Rosero, H.; Gonzalez-Gutierrez, L. V.; Baldenegro-Pérez, L. A.; & Carrasco-Marín, F. (2017). Functionalized adsorbents prepared from fruit peels: Equilibrium, kinetic and thermodynamic studies for copper adsorption in aqueous solution. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2017.06.032
Jafari, S. A.; & Jamali, A. (2016). Continuous cadmium removal from aqueous solutions by seaweed in a packed-bed column under consecutive sorption-desorption cycles. Korean Journal of Chemical Engineering, 33(4), 1296–1304. https://doi.org/10.1007/s11814-015-0261-1
Hokkanen, S.; Bhatnagar, A.; & Sillanpää, M. (2016). A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Research, 91, 156–173. https://doi.org/https://doi.org/10.1016/j.watres.2016.01.008
Herrera-Barros, A.; Bitar-Castro, N.; Villabona-Ortíz, Á.; Tejada-Tovar, C.; & González-Delgado, Á. D. (2020). Nickel adsorption from aqueous solution using lemon peel biomass chemically modified with TiO2 nanoparticles. Sustainable Chemistry and Pharmacy, 17, 100299. https://doi.org/10.1016/j.scp.2020.100299
Gómez, V. E.; Herrera, A. P.; & Sánchez, J. H. (2019). Removal of acetylsalicylic acid (Asa) in packed microcolumns with carbon xerogel modified with TiO2 nanoparticles. Ingenieria e Investigacion, 39(2), 11–20. https://doi.org/https://doi.org/10.15446/ing.investig.v39n2.67604
Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M. S.; & Catalano, A. (2020). Nickel: Human health and environmental toxicology. In International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph17030679
Chao, H. P.; Chang, C. C.; & Nieva, A. (2014). Biosorption of heavy metals on Citrus maxima peel, passion fruit shell, and sugarcane bagasse in a fixed-bed column. Journal of Industrial and Engineering Chemistry, 20(5), 3408–3414. https://doi.org/10.1016/j.jiec.2013.12.027
Butler, L.; Lall, U.; & Bonnafous, L. (2017). Cumulative heavy metal contamination in mining areas of the Rimac, Peru basin (pp. 1–27). http://water.columbia.edu/files/2018/01/13.2017.Butler.Draft_.Cumulative-heavy-metal-contamination-in-mining-areas.pdf
Boucherdoud, A.; Kherroub, D. E.; Bestani, B.; Benderdouche, N.; Douinat, O.; & History, A. (2021). Fixed-bed adsorption dynamics of methylene blue from aqueous solution using alginate-activated carbon composites adsorbents ARTICLE INFO ABSTRACT/RESUME. Algerian Journal of Environmental Science and Technology Month Edition, 0(0). www.aljest.org
Ratan, S.; Singh, I.; Sarkar, J.; & Rm, N. (2016). The Removal of Nickel from Waste Water by Modified Coconut Coir Pith. Chemical Sciences Journal, 7(3), 1–6. https://doi.org/10.4172/2150-3494.1000136
Saadat, S.; Hekmatzadeh, A. A.; & Karimi Jashni, A. (2016). Mathematical modeling of the Ni(II) removal from aqueous solutions onto pre-treated rice husk in fixed-bed columns: a comparison. Desalination and Water Treatment, 57(36), 16907–16918. https://doi.org/10.1080/19443994.2015.1087877
Barquilha, C. E. R.; Cossich, E. S.; Tavares, C. R. G.; & Silva, E. A. (2017). Biosorption of nickel(II) and copper(II) ions in batch and fixed-bed columns by free and immobilized marine algae Sargassum sp. Journal of Cleaner Production, 150, 58–64. https://doi.org/10.1016/j.jclepro.2017.02.199
Singh, S.; & Shukla, S. R. (2017). Theoretical studies on adsorption of Ni(II) from aqueous solution using Citrus limetta peels. Environmental Progress and Sustainable Energy. https://doi.org/10.1002/ep.12526
Villabona-Ortíz, A.; Tejada-Tovar, C.; González-Delgado, Á. D.; Herrera-Barros, A.; & Cantillo-Arroyo, G. (2019). Immobilization of Lead and Nickel Ions from Polluted Yam Peels Biomass Using Cement-Based Solidification/Stabilization Technique. International Journal of Chemical Engineering, 2019. https://doi.org/https://doi.org/10.1155/2019/5413960
Valencia, J. A. R.; González, J. P.; Jimenez-Pitre, I.; & Molina-Bolívar, G. (2019). Physico-chemical treatment of waste water contaminated with heavy metals in the industry of metallic coatings. Journal of Water and Land Development, 43(1), 171–176. https://doi.org/10.2478/jwld-2019-0075
Tejada-Tovar, C. N.; Villabona-Ortíz, A.; & Ortega-Toro, R. (2020). Cr(VI) biosorption: Effect of temperature,particle size and bed height. Revista Facultad de Ingenieria, 96, 78–86. https://doi.org/10.17533/udea.redin.20191149
Tejada-Tovar, C.; Gallo-Mercado, J.; Moscote, J.; Villabona-Ortíz, A.; & Acevedo-Correra, D. (2018). Competitive adsorption of lead and nickel ont yam husk and palm bagasse in continuous system. Revista Biotecnología En El Sector Agropecuario y Agroindustrial, 16(1), 52–61. https://doi.org/http://dx.doi.org/10.18684/bsaa.v16n1.624
Šuránek, M.; Melichová, Z.; Kureková, V.; Kljajević, L.; & Nenadović, S. (2021). Removal of Nickel from Aqueous Solutions by Natural Bentonites from Slovakia. Materials, 14(2), 282. https://doi.org/10.3390/ma14020282
Sreenivas, K. M.; Inarkar, M. B.; Gokhale, S. V.; & Lele, S. S. (2014). Re-utilization of ash gourd (Benincasa hispida) peel waste for chromium (VI) biosorption: Equilibrium and column studies. Journal of Environmental Chemical Engineering, 2(1), 455–462. https://doi.org/10.1016/j.jece.2014.01.017
Šoštarić, T. D.; Petrović, M. S.; Pastor, F. T.; Lončarević, D. R.; Petrović, J. T.; Milojković, J. V.; & Stojanović, M. D. (2018). Study of heavy metals biosorption on native and alkali-treated apricot shells and its application in wastewater treatment. Journal of Molecular Liquids, 259, 340–349. https://doi.org/10.1016/j.molliq.2018.03.055
Sivarajasekar, N.; Mohanraj, N.; Baskar, R.; & Sivamani, S. (2018). Fixed-Bed Adsorption of Ranitidine Hydrochloride Onto Microwave Assisted—Activated Aegle marmelos Correa Fruit Shell: Statistical Optimization and Breakthrough Modelling. Arabian Journal for Science and Engineering, 43(5), 2205–2215. https://doi.org/10.1007/s13369-017-2565-4
Bibaj, E.; Lysigaki, K.; Nolan, J. W.; Seyedsalehi, M.; Deliyanni, E. A.; Mitropoulos, A. C.; & Kyzas, G. Z. (2019). Activated carbons from banana peels for the removal of nickel ions. International Journal of Environmental Science and Technology, 16(2), 667–680. https://doi.org/10.1007/s13762-018-1676-0
Azimi, A.; Azari, A.; Rezakazemi, M.; & Ansarpour, M. (2017). Removal of heavy metals from industrial wastewaters: A Review. ChemBioEng Reviews, 4(1), 37–59. https://doi.org/10.1002/cben.201600010
Azadi, F.; Saadat, S.; & Karimi-Jashni, A. (2018). Experimental Investigation and Modeling of Nickel Removal from Wastewater Using Modified Rice Husk in Continuous Reactor by Response Surface Methodology. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 42(3), 315–323. https://doi.org/10.1007/s40996-017-0090-z
Altino, H. O. N.; Costa, B. E. S.; & Da Cunha, R. N. (2017). Biosorption optimization of Ni(II) ions on Macauba (Acrocomia aculeata) oil extraction residue using fixed-bed column. Journal of Environmental Chemical Engineering, 5(5), 4895–4905. https://doi.org/10.1016/j.jece.2017.09.025
Abdolali, A.; Ngo, H. H.; Guo, W.; Zhou, J. L.; Zhang, J.; Liang, S.; Chang, S. W.; Nguyen, D. D.; & Liu, Y. (2017). Application of a breakthrough biosorbent for removing heavy metals from synthetic and real wastewaters in a lab-scale continuous fixed-bed column. Bioresource Technology. https://doi.org/10.1016/j.biortech.2017.01.016
Abbas, A.; Hussain, M. A.; Sher, M.; Irfan, M. I.; Tahir, M. N.; Tremel, W.; Hussain, S. Z.; & Hussain, I. (2017). Design, characterization and evaluation of hydroxyethylcellulose based novel regenerable supersorbent for heavy metal ions uptake and competitive adsorption. International Journal of Biological Macromolecules, 102, 170–180. https://doi.org/10.1016/j.ijbiomac.2017.04.024
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2022-06-01
date_accessioned 2022-06-01 00:00:00
date_available 2022-06-01 00:00:00
url https://revistas.eia.edu.co/index.php/reveia/article/view/1537
url_doi https://doi.org/10.24050/reia.v19i38.1537
issn 1794-1237
eissn 2463-0950
doi 10.24050/reia.v19i38.1537
citationstartpage 3819 pp. 1
citationendpage 17
url3_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/1537/1489
_version_ 1797159387293286400