Design, simulation and first test of an automatic suturing device coupled to a robot

Objective: Robotic assistants are becoming a very helpful tool for surgeons. As forthe suturing procedure, several commercial devices assist the physician in suturing.However, such devices have not yet been coupled to a robot assistant in order toperform sutures fully automatically. This could contribute to a procedure that isoften routinely performed but requires time and dexterity.Materials and methods: This article presents the adaptation of a commercialmanual suture gripper, the Medtronic Endo Stitch, to a Universal Robots UR3 robot.The gripper was modeled in SolidWorks, as well as a motorized coupling device,which were simulated in CoppeliaSim. Once its proper functioning was verified, thedevice was fabricated in a 3D printer and coupl... Ver más

Guardado en:

1794-1237

2463-0950

21

2024-01-01

4116 pp. 1

18

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

Revista EIA - 2023

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

id bce6b321a5b2c11685de30da4272a03d
record_format ojs
spelling Design, simulation and first test of an automatic suturing device coupled to a robot
Sutura automática
Revista EIA
Fondo Editorial EIA - Universidad EIA
Artículo de revista
Núm. 41 , Año 2024 : .
41
21
Ambiente virtual
Robots colaborativos
Pinza Endo Stitch
Objective: Robotic assistants are becoming a very helpful tool for surgeons. As forthe suturing procedure, several commercial devices assist the physician in suturing.However, such devices have not yet been coupled to a robot assistant in order toperform sutures fully automatically. This could contribute to a procedure that isoften routinely performed but requires time and dexterity.Materials and methods: This article presents the adaptation of a commercialmanual suture gripper, the Medtronic Endo Stitch, to a Universal Robots UR3 robot.The gripper was modeled in SolidWorks, as well as a motorized coupling device,which were simulated in CoppeliaSim. Once its proper functioning was verified, thedevice was fabricated in a 3D printer and coupled to a UR3 robot, then its operationwas tested in the tracking of a suture trajectory with displacement.Results: The trajectories planned in Matlab are sent to the UR3 robot viaROS. It was possible to verify the good performance of the suture movement withdisplacement, carried out by the printed device and by the Endo Stitich gripper.The opening and closing of the gripper was also obtained under the action of themotors included in the device.Conclusions: The motorized device together with the Endo Stitch gripper,coupled to the UR3 robot, is capable of following the trajectories required forautomatic suturing. Future work will test suturing with thread on a test phantom inorder to measure its true potential for automatic suturing.
Fraile Marinero, Juan Carlos
Vivas Alban, Oscar Andres
Consuegra Gonzalez, Jose Luis
Tapias Diaz, Omaira Luz
Iacovacci, V., Lucarini, G., Innocenti, C., Comisso, N., Dario, P., Ricotti, L., & Menciassi, A. (2015). Polydimethylsiloxane films doped with NdFeB powder: magnetic characterization and potential applications in biomedical engineering and microrobotics. Biomedical Microdevices, 17, 112. DOI: 10.1007/s10544-015-0024-0
Lin, C., Li, X., Phan, P. T., Meng, A. H. T. H. L. K., Liu, J., Lai, W., Huang, Y., Le, H. M., Miyasaka, M., Ho, K. Y., Chiu, P. W. Y., & Phee, S. J. (2020). Sewing up the Wounds: A Robotic Suturing System for Flexible Endoscopy. IEEE Robotics & Automation Magazine, 27(3), 45-54.
Muñoz, A. (2020). Estrategia de control del robot UR3 para entornos de cirugía robotizados, Maestría en Ingeniería Industrial, Universidad de Valladolid, España. http://uvadoc.uva.es/handle/10324/42399
Melzer, A., Schurr, M. O., Lirici, M. M., Klemm, B., Stöckel, D., & Buess, G. (1994). Future trends in endoscopic suturing. Endoscopic Surgery and Allied Technologies, 2(1), 78–82.
Gonzalez, C. A. (2018). Desarrollo de aplicaciones industriales con robots colaborativos utilizando el middleware de control de robots. Máster en Ingeniería Industrial, Universidad Politecnica de Valencia, España.
Medtronic. (2022). Endo Stitch™ Suturing Device. https://medtronic.com. Acceseed november 2022.
Kam, M., Saeidi, H., Hsieh, M. H., Kang, J. U., & Krieger, A. (2021). A Confidence-Based Supervised-Autonomous Control Strategy for Robotic Vaginal Cuff Closure. 2021 IEEE International Conference on Robotics and Automation (ICRA), Xián, China, 12261–12267. DOI: 10.1109/icra48506.2021.9561685
Leeds, S. G., Wooley, L., Sankaranarayanan, G., Daoud, Y., Fleshman, J., & Chauhan, S. (2017). Learning Curve Associated with an Automated Laparoscopic Suturing Device Compared with Laparoscopic Suturing. Surgical Innovation, 24(2), 109–114. DOI: 10.1177/1553350616687903
Kebria, P. M., Al-Wais, S., Abdi, H., & Nahavandi, S. (2017). Kinematic and dynamic modelling of UR5 manipulator. 2016 IEEE International Conference on Systems, Man, and Cybernetics, Budapest, Hungary, 4229–4234. DOI: 10.1109/SMC.2016.7844896
Huhn, J. C. (2016). Advances in Equipment and Instrumentation in Laparoscopic Surgery. Veterinary Clinics of North America - Small Animal Practice, 46(1), 13–29. DOI: 10.1016/j.cvsm.2015.08.005
Nuzzi, R., & Brusasco, L. (2018). State of the art of robotic surgery related to vision: Brain and eye applications of newly available devices. Eye and Brain, 10, 13–24. DOI: 10.2147/EB.S148644
Guevara, P. (2019). Dispositivo mecatrónico para el manejo de un instrumento quirúrigico de sutura laparoscópica. Tesis pregrado Ingeniería de Sistemas y Automática, Universidad de Málaga, España. http://zaguan.unizar.es/TAZ/EUCS/2014/14180/TAZ-TFG-2014-408.pdf
Hideki, E., Simas, H., & Martins, D. (2015). New Kinematic Structures For One-side Stitching Devices. Proceedings of the 23rd ABCM International Congress of Mechanical Engineering, December. DOI:10.13140/RG.2.1.4777.8644
Nguyen, N. T., Mayer, K. L., Bold, R. J., Larson, M., Foster, S., Ho, H. S., & Wolfe, B. M. (2000). Laparoscopic suturing evaluation among surgical residents. Journal of Surgical Research, 93(1), 133–136. DOI: 10.1006/jsre.2000.5969
info:eu-repo/semantics/article
Páez, D., Romero, J. P., & Guarnizo, J. G. (2021). UR3 modelo cinemático inverso. Documento interno de investigación. Universidad Santo Tomás, Colombia. DOI: 10.15332/dt.inv.2021.02849 https://doi.org/10.15332/dt.inv.2021.02849
Pedram, S. A., Ferguson, P., Ma, J., Dutson, E., & Rosen, J. (2017). Autonomous suturing via surgical robot: An algorithm for optimal selection of needle diameter, shape, and path. 2017 IEEE International Conference on Robotics and Automation, Singapur, 2391–2398, DOI: 10.1109/ICRA.2017.7989278
ROS (2022). Robot Operating system. https://www.ros.org/. Acceseed november 2022.
Universal Robots (2022). https://www.universal-robots.com/es/productos/robot-ur3/. Acceseed november 2022.
Vivas, A., & Sabater, J. M. (2021). UR5 Robot Manipulation using Matlab/Simulink and ROS. 2021 IEEE International Conference on Mechatronics and Automation, Takamatsu, Japan, 338–343. DOI: 10.1109/ICMA52036.2021.9512650
Galvao-Neto, M., Grecco, E., Souza, T. F., Quadros, L. G., Silva, L. B., & Campos, J. M. (2016). Endoscopic Sleeve Gastroplasty - Minimally Invasive Therapy for Primary Obesity Treatment. Arquivos Brasileiros de Cirurgia Digestiva, 29(suppl 1), 95–97. DOI: 10.1590/0102-6720201600S10023
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
http://purl.org/redcol/resource_type/ART
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
García, M. L., Castro, L., Aguirrezabalaga, J., & Noguera, J. F. (2021). Robotic-like suturing with FlexDex Surgical System® for difficult laparoscopic suture. Cirugía Española, 99(3), 222–228. DOI: 10.1016/j.ciresp.2020.10.005
Arcese, L., Fruchard, M., & Ferreira, A. (2013). Adaptive Controller and Observer for a Magnetic Microrobot. IEEE Transactions on Robotics, 29(4), 1060–1067. DOI: 10.1109/TRO.2013.2257581
Díez del Val, I., Loureiro, C., Asensio, J. I., Bettonica, C., Leturio, S., Eizaguirre, E., Miró, M., García, M. M., Martí, L., Aranda, H., Barrenetxea, J., Estremiana, F., Ortiz, J., & Farran, L. (2019). Minimally Invasive and Robotic Surgery in the Surgical Treatment of Esophagogastric Junction Cancer. Cirugía Española (English Edition), 97(8), 451–458. DOI: 10.1016/j.ciresp.2019.03.013
https://creativecommons.org/licenses/by-nc-nd/4.0
Objetivo: Los asistentes robóticos se están convirtiendo en una herramienta degran ayuda para los cirujanos. En cuanto al procedimiento de sutura, aunque existenvarios dispositivos comerciales que le ayudan al médico a realizarla, todavía no sehan acoplado dichos dispositivos a un robot asistente con el fin de realizar suturasde manera completamente automática. De esta manera se contribuiría con unprocedimiento que muchas veces es rutinario pero que requiere tiempo y destreza.Materiales y métodos: Este artículo presenta la adecuación de una pinzamanual de sutura comercial, la Endo Stitch de Medtronic, a un robot UR3 deUniversal Robots. La pinza fue modelada en SolidWorks, así como un dispositivode acople motorizado, los cuales fueron simulados en CoppeliaSim. Una vezverificado su buen funcionamiento, el dispositivo fue fabricado en una impresora3D y acoplado a un robot UR3, probándose entonces su funcionamiento en elseguimiento de una trayectoria de sutura con desplazamiento.Resultados: Las trayectorias planificadas en Matlab son enviadas al robot UR3vía ROS. Se pudo comprobar el buen desempeño del movimiento de sutura condesplazamiento, efectuado por el dispositivo impreso y por la pinza Endo Stitich.Igualmente se obtuvo la apertura y cerrado de la pinza bajo el accionar de losmotores incluidos en el dispositivo.Conclusiones: El dispositivo motorizado junto con la pinza Endo Stitch,y acoplado al robot UR3, es capaz de seguir las trayectorias necesarias para larealización de una sutura automática. Trabajos futuros realizarán pruebas desutura con hilo sobre un phantom de prueba con el fin de medir su verdaderopotencial para realizar suturas de manera automática.
Automatic suture
Colaborative robots
Virtual environment
Endo Stitch device
Journal article
application/pdf
https://revistas.eia.edu.co/index.php/reveia/article/view/1667
D’Auria, D., & Persia, F. (2017). A collaborative robotic cyber physical system for surgery applications. 2017 IEEE International Conference on Information Reuse and Integration, San Diego, USA, 79–83. DOI: 10.1109/IRI.2017.84
Inglés
Publication
Revista EIA - 2023
Cho, C. N., Cho, S. H., Cho, S. Y., Kim, K. G., & Park, S. J. (2016). A Novel Successive Suturing Device for Laparoscopic Surgery. Surgical Innovation, 23(4), 390–396. DOI: 10.1177/1553350616628682
Chen, Y., Wang, Q., Chi, C., Wang, C., Gao, Q., Zhang, H., Li, Z., Mu, Z., Xu, R., Sun, Z., & Qian, H. (2022). A collaborative robot for COVID-19 oropharyngeal swabbing. Robotics and Autonomous Systems, 148, 103917. DOI: 10.1016/j.robot.2021.103917
Brehmer, B., Moll, C., Makris, A., Kirschner-Hermanns, R., Knüchel, R., & Jakse, G. (2008). EndoSewTM: New device for laparoscopic running sutures. Journal of Endourology, 22(2), 307–311. DOI: 10.1089/end.2007.0055
Beuss, F., Schmatz, F., Stepputat, M., Nokodian, F., Fluegge, W., & Frerich, B. (2021). Cobots in maxillofacial surgery - Challenges for workplace design and the human-machine-interface. Procedia CIRP, 100, 488–493. DOI:10.1007/s10845-022-01953-w
Bauzano, E., Garcia-Morales, I., & Muñoz-Martinez, V. (2013). Asistencia de Robots Colaborativos para Procedimientos de Sutura Vía Cirugía Mínimamente Invasiva. XXXIV Jornadas de Automática, Barcelona, España. https://www.researchgate.net/publication/303881054
Andersen, R. S. (2018). Kinematics of a UR5. Aalborg University, 1–12. http://rasmusan.blog.aau.dk/files/ur5_kinematics.pdf
Diseño, simulación y primera prueba de un dispositivo de sutura automática acoplado a un robot
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
2024-01-01 09:26:25
2024-01-01
2024-01-01 09:26:25
https://revistas.eia.edu.co/index.php/reveia/article/download/1667/1593
1794-1237
2463-0950
18
4116 pp. 1
https://doi.org/10.24050/reia.v21i41.1667
10.24050/reia.v21i41.1667
institution UNIVERSIDAD EIA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADEIA/logo.png
country_str Colombia
collection Revista EIA
title Design, simulation and first test of an automatic suturing device coupled to a robot
spellingShingle Design, simulation and first test of an automatic suturing device coupled to a robot
Fraile Marinero, Juan Carlos
Vivas Alban, Oscar Andres
Consuegra Gonzalez, Jose Luis
Tapias Diaz, Omaira Luz
Sutura automática
Ambiente virtual
Robots colaborativos
Pinza Endo Stitch
Automatic suture
Colaborative robots
Virtual environment
Endo Stitch device
title_short Design, simulation and first test of an automatic suturing device coupled to a robot
title_full Design, simulation and first test of an automatic suturing device coupled to a robot
title_fullStr Design, simulation and first test of an automatic suturing device coupled to a robot
title_full_unstemmed Design, simulation and first test of an automatic suturing device coupled to a robot
title_sort design, simulation and first test of an automatic suturing device coupled to a robot
title_eng Diseño, simulación y primera prueba de un dispositivo de sutura automática acoplado a un robot
description Objective: Robotic assistants are becoming a very helpful tool for surgeons. As forthe suturing procedure, several commercial devices assist the physician in suturing.However, such devices have not yet been coupled to a robot assistant in order toperform sutures fully automatically. This could contribute to a procedure that isoften routinely performed but requires time and dexterity.Materials and methods: This article presents the adaptation of a commercialmanual suture gripper, the Medtronic Endo Stitch, to a Universal Robots UR3 robot.The gripper was modeled in SolidWorks, as well as a motorized coupling device,which were simulated in CoppeliaSim. Once its proper functioning was verified, thedevice was fabricated in a 3D printer and coupled to a UR3 robot, then its operationwas tested in the tracking of a suture trajectory with displacement.Results: The trajectories planned in Matlab are sent to the UR3 robot viaROS. It was possible to verify the good performance of the suture movement withdisplacement, carried out by the printed device and by the Endo Stitich gripper.The opening and closing of the gripper was also obtained under the action of themotors included in the device.Conclusions: The motorized device together with the Endo Stitch gripper,coupled to the UR3 robot, is capable of following the trajectories required forautomatic suturing. Future work will test suturing with thread on a test phantom inorder to measure its true potential for automatic suturing.
description_eng Objetivo: Los asistentes robóticos se están convirtiendo en una herramienta degran ayuda para los cirujanos. En cuanto al procedimiento de sutura, aunque existenvarios dispositivos comerciales que le ayudan al médico a realizarla, todavía no sehan acoplado dichos dispositivos a un robot asistente con el fin de realizar suturasde manera completamente automática. De esta manera se contribuiría con unprocedimiento que muchas veces es rutinario pero que requiere tiempo y destreza.Materiales y métodos: Este artículo presenta la adecuación de una pinzamanual de sutura comercial, la Endo Stitch de Medtronic, a un robot UR3 deUniversal Robots. La pinza fue modelada en SolidWorks, así como un dispositivode acople motorizado, los cuales fueron simulados en CoppeliaSim. Una vezverificado su buen funcionamiento, el dispositivo fue fabricado en una impresora3D y acoplado a un robot UR3, probándose entonces su funcionamiento en elseguimiento de una trayectoria de sutura con desplazamiento.Resultados: Las trayectorias planificadas en Matlab son enviadas al robot UR3vía ROS. Se pudo comprobar el buen desempeño del movimiento de sutura condesplazamiento, efectuado por el dispositivo impreso y por la pinza Endo Stitich.Igualmente se obtuvo la apertura y cerrado de la pinza bajo el accionar de losmotores incluidos en el dispositivo.Conclusiones: El dispositivo motorizado junto con la pinza Endo Stitch,y acoplado al robot UR3, es capaz de seguir las trayectorias necesarias para larealización de una sutura automática. Trabajos futuros realizarán pruebas desutura con hilo sobre un phantom de prueba con el fin de medir su verdaderopotencial para realizar suturas de manera automática.
author Fraile Marinero, Juan Carlos
Vivas Alban, Oscar Andres
Consuegra Gonzalez, Jose Luis
Tapias Diaz, Omaira Luz
author_facet Fraile Marinero, Juan Carlos
Vivas Alban, Oscar Andres
Consuegra Gonzalez, Jose Luis
Tapias Diaz, Omaira Luz
topicspa_str_mv Sutura automática
Ambiente virtual
Robots colaborativos
Pinza Endo Stitch
topic Sutura automática
Ambiente virtual
Robots colaborativos
Pinza Endo Stitch
Automatic suture
Colaborative robots
Virtual environment
Endo Stitch device
topic_facet Sutura automática
Ambiente virtual
Robots colaborativos
Pinza Endo Stitch
Automatic suture
Colaborative robots
Virtual environment
Endo Stitch device
citationvolume 21
citationissue 41
citationedition Núm. 41 , Año 2024 : .
publisher Fondo Editorial EIA - Universidad EIA
ispartofjournal Revista EIA
source https://revistas.eia.edu.co/index.php/reveia/article/view/1667
language Inglés
format Article
rights info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-nd/4.0
Revista EIA - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
references_eng Iacovacci, V., Lucarini, G., Innocenti, C., Comisso, N., Dario, P., Ricotti, L., & Menciassi, A. (2015). Polydimethylsiloxane films doped with NdFeB powder: magnetic characterization and potential applications in biomedical engineering and microrobotics. Biomedical Microdevices, 17, 112. DOI: 10.1007/s10544-015-0024-0
Lin, C., Li, X., Phan, P. T., Meng, A. H. T. H. L. K., Liu, J., Lai, W., Huang, Y., Le, H. M., Miyasaka, M., Ho, K. Y., Chiu, P. W. Y., & Phee, S. J. (2020). Sewing up the Wounds: A Robotic Suturing System for Flexible Endoscopy. IEEE Robotics & Automation Magazine, 27(3), 45-54.
Muñoz, A. (2020). Estrategia de control del robot UR3 para entornos de cirugía robotizados, Maestría en Ingeniería Industrial, Universidad de Valladolid, España. http://uvadoc.uva.es/handle/10324/42399
Melzer, A., Schurr, M. O., Lirici, M. M., Klemm, B., Stöckel, D., & Buess, G. (1994). Future trends in endoscopic suturing. Endoscopic Surgery and Allied Technologies, 2(1), 78–82.
Gonzalez, C. A. (2018). Desarrollo de aplicaciones industriales con robots colaborativos utilizando el middleware de control de robots. Máster en Ingeniería Industrial, Universidad Politecnica de Valencia, España.
Medtronic. (2022). Endo Stitch™ Suturing Device. https://medtronic.com. Acceseed november 2022.
Kam, M., Saeidi, H., Hsieh, M. H., Kang, J. U., & Krieger, A. (2021). A Confidence-Based Supervised-Autonomous Control Strategy for Robotic Vaginal Cuff Closure. 2021 IEEE International Conference on Robotics and Automation (ICRA), Xián, China, 12261–12267. DOI: 10.1109/icra48506.2021.9561685
Leeds, S. G., Wooley, L., Sankaranarayanan, G., Daoud, Y., Fleshman, J., & Chauhan, S. (2017). Learning Curve Associated with an Automated Laparoscopic Suturing Device Compared with Laparoscopic Suturing. Surgical Innovation, 24(2), 109–114. DOI: 10.1177/1553350616687903
Kebria, P. M., Al-Wais, S., Abdi, H., & Nahavandi, S. (2017). Kinematic and dynamic modelling of UR5 manipulator. 2016 IEEE International Conference on Systems, Man, and Cybernetics, Budapest, Hungary, 4229–4234. DOI: 10.1109/SMC.2016.7844896
Huhn, J. C. (2016). Advances in Equipment and Instrumentation in Laparoscopic Surgery. Veterinary Clinics of North America - Small Animal Practice, 46(1), 13–29. DOI: 10.1016/j.cvsm.2015.08.005
Nuzzi, R., & Brusasco, L. (2018). State of the art of robotic surgery related to vision: Brain and eye applications of newly available devices. Eye and Brain, 10, 13–24. DOI: 10.2147/EB.S148644
Guevara, P. (2019). Dispositivo mecatrónico para el manejo de un instrumento quirúrigico de sutura laparoscópica. Tesis pregrado Ingeniería de Sistemas y Automática, Universidad de Málaga, España. http://zaguan.unizar.es/TAZ/EUCS/2014/14180/TAZ-TFG-2014-408.pdf
Hideki, E., Simas, H., & Martins, D. (2015). New Kinematic Structures For One-side Stitching Devices. Proceedings of the 23rd ABCM International Congress of Mechanical Engineering, December. DOI:10.13140/RG.2.1.4777.8644
Nguyen, N. T., Mayer, K. L., Bold, R. J., Larson, M., Foster, S., Ho, H. S., & Wolfe, B. M. (2000). Laparoscopic suturing evaluation among surgical residents. Journal of Surgical Research, 93(1), 133–136. DOI: 10.1006/jsre.2000.5969
Páez, D., Romero, J. P., & Guarnizo, J. G. (2021). UR3 modelo cinemático inverso. Documento interno de investigación. Universidad Santo Tomás, Colombia. DOI: 10.15332/dt.inv.2021.02849 https://doi.org/10.15332/dt.inv.2021.02849
Pedram, S. A., Ferguson, P., Ma, J., Dutson, E., & Rosen, J. (2017). Autonomous suturing via surgical robot: An algorithm for optimal selection of needle diameter, shape, and path. 2017 IEEE International Conference on Robotics and Automation, Singapur, 2391–2398, DOI: 10.1109/ICRA.2017.7989278
ROS (2022). Robot Operating system. https://www.ros.org/. Acceseed november 2022.
Universal Robots (2022). https://www.universal-robots.com/es/productos/robot-ur3/. Acceseed november 2022.
Vivas, A., & Sabater, J. M. (2021). UR5 Robot Manipulation using Matlab/Simulink and ROS. 2021 IEEE International Conference on Mechatronics and Automation, Takamatsu, Japan, 338–343. DOI: 10.1109/ICMA52036.2021.9512650
Galvao-Neto, M., Grecco, E., Souza, T. F., Quadros, L. G., Silva, L. B., & Campos, J. M. (2016). Endoscopic Sleeve Gastroplasty - Minimally Invasive Therapy for Primary Obesity Treatment. Arquivos Brasileiros de Cirurgia Digestiva, 29(suppl 1), 95–97. DOI: 10.1590/0102-6720201600S10023
García, M. L., Castro, L., Aguirrezabalaga, J., & Noguera, J. F. (2021). Robotic-like suturing with FlexDex Surgical System® for difficult laparoscopic suture. Cirugía Española, 99(3), 222–228. DOI: 10.1016/j.ciresp.2020.10.005
Arcese, L., Fruchard, M., & Ferreira, A. (2013). Adaptive Controller and Observer for a Magnetic Microrobot. IEEE Transactions on Robotics, 29(4), 1060–1067. DOI: 10.1109/TRO.2013.2257581
Díez del Val, I., Loureiro, C., Asensio, J. I., Bettonica, C., Leturio, S., Eizaguirre, E., Miró, M., García, M. M., Martí, L., Aranda, H., Barrenetxea, J., Estremiana, F., Ortiz, J., & Farran, L. (2019). Minimally Invasive and Robotic Surgery in the Surgical Treatment of Esophagogastric Junction Cancer. Cirugía Española (English Edition), 97(8), 451–458. DOI: 10.1016/j.ciresp.2019.03.013
D’Auria, D., & Persia, F. (2017). A collaborative robotic cyber physical system for surgery applications. 2017 IEEE International Conference on Information Reuse and Integration, San Diego, USA, 79–83. DOI: 10.1109/IRI.2017.84
Cho, C. N., Cho, S. H., Cho, S. Y., Kim, K. G., & Park, S. J. (2016). A Novel Successive Suturing Device for Laparoscopic Surgery. Surgical Innovation, 23(4), 390–396. DOI: 10.1177/1553350616628682
Chen, Y., Wang, Q., Chi, C., Wang, C., Gao, Q., Zhang, H., Li, Z., Mu, Z., Xu, R., Sun, Z., & Qian, H. (2022). A collaborative robot for COVID-19 oropharyngeal swabbing. Robotics and Autonomous Systems, 148, 103917. DOI: 10.1016/j.robot.2021.103917
Brehmer, B., Moll, C., Makris, A., Kirschner-Hermanns, R., Knüchel, R., & Jakse, G. (2008). EndoSewTM: New device for laparoscopic running sutures. Journal of Endourology, 22(2), 307–311. DOI: 10.1089/end.2007.0055
Beuss, F., Schmatz, F., Stepputat, M., Nokodian, F., Fluegge, W., & Frerich, B. (2021). Cobots in maxillofacial surgery - Challenges for workplace design and the human-machine-interface. Procedia CIRP, 100, 488–493. DOI:10.1007/s10845-022-01953-w
Bauzano, E., Garcia-Morales, I., & Muñoz-Martinez, V. (2013). Asistencia de Robots Colaborativos para Procedimientos de Sutura Vía Cirugía Mínimamente Invasiva. XXXIV Jornadas de Automática, Barcelona, España. https://www.researchgate.net/publication/303881054
Andersen, R. S. (2018). Kinematics of a UR5. Aalborg University, 1–12. http://rasmusan.blog.aau.dk/files/ur5_kinematics.pdf
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2024-01-01
date_accessioned 2024-01-01 09:26:25
date_available 2024-01-01 09:26:25
url https://revistas.eia.edu.co/index.php/reveia/article/view/1667
url_doi https://doi.org/10.24050/reia.v21i41.1667
issn 1794-1237
eissn 2463-0950
doi 10.24050/reia.v21i41.1667
citationstartpage 4116 pp. 1
citationendpage 18
url3_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/1667/1593
_version_ 1798735558137085952