Uso de tecnologías CRISPR-CAS9 en microalgas aplicado a la obtención de productos biotecnológicos de interés industrial

Las microalgas se destacan por su capacidad de adaptarse a diferentes medios de cultivo, participación en captura de CO2  y productos de interés biotecnológico cómo biocombustibles, proteínas, biofertilizantes, suplementos alimenticios, pigmentos, entre otros. Se han trabajado diferentes tipos de estrés como variación del pH, deficiencia de nutrientes, estrés salino, cambios en la temperatura y alta irradiancia con el fin de aumentar la producción de metabolitos aplicado a diferentes industrias; sin embargo, la demanda de los productos biotecnológicos se ha incrementado ante las necesidades de la población, por lo que el uso de tecnologías de modificación genética ha surgido como una alternativa  durante la última década gracias a la capaci... Ver más

Guardado en:

2256-1498

14

2024-01-01

1

28

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Revista Mutis - 2024

id a8cbabee56138ac47d82c7dc281533f9
record_format ojs
spelling Uso de tecnologías CRISPR-CAS9 en microalgas aplicado a la obtención de productos biotecnológicos de interés industrial
Ng, I., Keskin, B. B., & Tan, S. (2020). A Critical Review of Genome Editing and Synthetic Biology Applications in Metabolic Engineering of Microalgae and Cyanobacteria. Biotechnology Journal, 15(8), e1900228-n/a. https://doi.org/10.1002/biot.201900228
Luo, Q., Zou, X., Wang, C., Li, Y., & Hu, Z. (2021). The roles of Cullins E3 ubiquitin ligases in the lipid biosynthesis of the green microalgae Chlamydomonas reinhardtii. International Journal of Molecular Sciences, 22(9), 4695. https://doi.org/10.3390/IJMS22094695
Machado Sierra, E., Serrano, M. C., Manares, A., Guerra, A., & Aranguren Díaz, Y. (2021). Microalgae: Potential for Bioeconomy in Food Systems. Applied Sciences, 11(23), 11316. https://doi.org/10.3390/app112311316
Makarova, K. S., Grishin, N. V., Shabalina, S. A., Wolf, Y. I., & Koonin, E. V. (2006). A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biology Direct, 1(1), 7. https://doi.org/10.1186/1745-6150-1-7
Makarova, K. S., Wolf, Y. I., Iranzo, J., Shmakov, S. A., Alkhnbashi, O. S., Brouns, S. J. J., Charpentier, E., Cheng, D., Haft, D. H., Horvath, P., Moineau, S., Mojica, F. J. M., Scott, D., Shah, S. A., Siksnys, V., Terns, M. P., Venclovas, Č, White, M. F., Yakunin, A. F., . . . Koonin, E. V. (2020). Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nature Reviews. Microbiology, 18(2), 67-83. https://doi.org/10.1038/s41579-019-0299-x
Mendoza, H., Jara, A. D. L., Freijanes, K., Cormona, L., Ramos, A. A., Duarte, V. D. S., et al. (2008). Characterization of Dunaliella salina strains by flow cytometry: A new approach to select carotenoid hyperproducing strains. Electronic Journal of Biotechnology, 11(4), 5–6. https ://doi.org/10.2225/vol11 –issue 4-fullt ext-2.
Musunuru, K., Chadwick, A. C., Mizoguchi, T., Garcia, S. P., DeNizio, J. E., Reiss, C. W., Wang, K., Iyer, S., Dutta, C., Clendaniel, V., Amaonye, M., Beach, A., Berth, K., Biswas, S., Braun, M. C., Chen, H., Colace, T. V., Ganey, J. D., Gangopadhyay, S. A., . . . Kathiresan, S. (2021). In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature (London), 593(7859), 429-434. https://doi.org/10.1038/s41586-021-03534-y
Nino Castillo, C. M., Rodriguez Rivera, F. C., Diaz, L. E., & Lancheros Diaz, A. G. (2017). Evaluación de las condiciones de crecimiento celular para la producción de astaxantina a patir de la microalga Haematococcus pluvialis. Nova: Publicación Científica En Ciencias Biomédicas, 15(28), 19-31. https://doi.org/10.22490/24629448.2073
Lin, W., & Ng, I. (2020). Development of CRISPR/Cas9 system in Chlorella vulgaris FSP-E to enhance lipid accumulation. Enzyme and Microbial Technology, 133, 109458. https://doi.org/10.1016/j.enzmictec.2019.109458
Nymark, M., Sharma, A. K., Sparstad, T., Bones, A. M., & Winge, P. (2016). A CRISPR/Cas9 system adapted for gene editing in marine algae. Scientific Reports, 6(1), 24951. https://doi.org/10.1038/srep24951
Ohlrogge, J., & Browse, J. (1995). Lipid biosynthesis. The plant cell, 7(7), 957.
Oslan, S. N. H., Shoparwe, N. F., Yusoff, A. H., Rahim, A. A., Chang, C. S., Tan, J. S., Oslan, S. N., Arumugam, K., Ariff, A. B., Sulaiman, A. Z., & Mohamed, M. S. (2021). A Review on Haematococcus pluvialis Bioprocess Optimization of Green and Red Stage Culture Conditions for the Production of Natural Astaxanthin. Biomolecules (Basel, Switzerland), 11(2), 256. https://doi.org/10.3390/biom11020256
Patel, V. K., Soni, N., Prasad, V., Sapre, A., Dasgupta, S., & Bhadra, B. (2019). CRISPR–Cas9 System for Genome Engineering of Photosynthetic Microalgae. Molecular Biotechnology, 61(8), 541-561. https://doi.org/10.1007/s12033-019-00185-3
Porta Helena. (2021). Conceptos básicos y avances de la transformación genética de las microalgas, 25(5), 127-139.
Ren, Y., Deng, J., Huang, J., Wu, Z., Yi, L., Bi, Y., & Chen, F. (2021). Using green alga Haematococcus pluvialis for astaxanthin and lipid co-production: Advances and outlook. Bioresource Technology, 340, 125736. https://doi.org/10.1016/j.biortech.2021.125736
Liu, M., Rehman, S., Tang, X., Gu, K., Fan, Q., Chen, D., & Ma, W. (2019). Methodologies for Improving HDR Efficiency. Frontiers in Genetics, 9, 691. https://doi.org/10.3389/fgene.2018.00691
Liao, C., & Beisel, C. L. (2021). The tracrRNA in CRISPR Biology and Technologies. Annual Review of Genetics, 55(1), 161-181. https://doi.org/10.1146/annurev-genet-071719-022559
Schüler, L., Greque de Morais, E., Trovão, M., Machado, A., Carvalho, B., Carneiro, M., Maia, I., Soares, M., Duarte, P., Barros, A., Pereira, H., Silva, J., & Varela, J. (2020). Isolation and Characterization of Novel Chlorella Vulgaris Mutants with Low Chlorophyll and Improved Protein Contents for Food Applications. Frontiers in Bioengineering and Biotechnology, 8, 469. https://doi.org/10.3389/fbioe.2020.00469
Kleinstiver, B. P., Prew, M. S., Tsai, S. Q., Topkar, V. V., Nguyen, N. T., Zheng, Z., Gonzales, A. P. W., Li, Z., Peterson, R. T., Yeh, J. J., Aryee, M. J., & Joung, J. K. (2015). Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature (London), 523(7561), 481-485. https://doi.org/10.1038/nature14592
Jiang, W., Brueggeman, A. J., Horken, K. M., Plucinak, T. M., & Weeks, D. P. (2014). Successful Transient Expression of Cas9 and Single Guide RNA Genes in Chlamydomonas reinhardtii. Eukaryotic Cell, 13(11), 1465-1469. https://doi.org/10.1128/EC.00213-14
Jiang, X., Liu, Y., Yin, X., Deng, Z., Zhang, S., Ma, C., & Wang, L. (2023). Efficient removal of chromium by a novel biochar-microalga complex: Mechanism and performance. Environmental Technology & Innovation, 31, 103156. https://doi.org/10.1016/j.eti.2023.103156
Kao, P., & Ng, I. (2017). CRISPRi mediated phosphoenolpyruvate carboxylase regulation to enhance the production of lipid in Chlamydomonas reinhardtii. Bioresource Technology, 245(Pt B), 1527-1537. https://doi.org/10.1016/j.biortech.2017.04.111
Kelterborn, S., Boehning, F., Sizova, I., Baidukova, O., Evers, H., & Hegemann, P. (2022). Gene Editing in Green Alga Chlamydomonas reinhardtii via CRISPR-Cas9 Ribonucleoproteins. Methods in molecular biology, 45-65. https://doi.org/10.1007/978-1-0716-1791-5_3
Kim, J., Chang, K. S., Lee, S., & Jin, E. (2021). Establishment of a Genome Editing Tool Using CRISPR-Cas9 in Chlorella vulgaris UTEX395. International Journal of Molecular Sciences, 22(2), 480. https://doi.org/10.3390/ijms22020480
Kim, M., Kim, S., Kim, Y., & Choi, T. (2023). Enhancement of Chlorella transformation efficacy by insert fragmentation. Algal Research (Amsterdam), 72, 103146. https://doi.org/10.1016/j.algal.2023.103146
Kolesnik, M. V., Fedorova, I., Karneyeva, K. A., Artamonova, D. N., & Severinov, K. V. (2021). Type III CRISPR-Cas Systems: Deciphering the Most Complex Prokaryotic Immune System. Biochemistry (Moscow), 86(10), 1301-1314. https://doi.org/10.1134/S0006297921100114
Li, Y., Xu, H., Han, F., Mu, J., Chen, D., Feng, B., & Zeng, H. (2015). Regulation of lipid metabolism in the green microalga Chlorella protothecoides by heterotrophy–photoinduction cultivation regime. Bioresource Technology, 192, 781-791. https://doi.org/10.1016/j.biortech.2014.07.028
Kong, W., Shen, B., Lyu, H., Kong, J., Ma, J., Wang, Z., & Feng, S. (2021). Review on carbon dioxide fixation coupled with nutrients removal from wastewater by microalgae. Journal of Cleaner Production, 292, 125975. https://doi.org/10.1016/j.jclepro.2021.125975
Koonin, E. V., Makarova, K. S., & Zhang, F. (2017). Diversity, classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology, 37, 67-78. https://doi.org/10.1016/j.mib.2017.05.008
Kühn, R. (2009). Gene knockout protocols (2. ed. ed.). Humana Press.
Lakhawat, S. S., Malik, N., Kumar, V., Kumar, S., & Sharma, P. K. (2022). Implications of CRISPR-Cas9 in Developing Next Generation Biofuel: A Mini-review. Current Protein & Peptide Science, 23(9), 574-584. https://doi.org/10.2174/1389203723666220907110310
Le-Feuvre, R., Moraga-Suazo, P., Gonzalez, J., Martin, S. S., Henríquez, V., Donoso, A., & Agurto-Muñoz, C. (2020). Biotechnology applied to Haematococcus pluvialis Fotow: challenges and prospects for the enhancement of astaxanthin accumulation. Journal of Applied Phycology, 32, 3831-3852.
Li, C., Chu, W., Gill, R. A., Sang, S., Shi, Y., Hu, X., Yang, Y., Zaman, Q. U., & Zhang, B. (2022). Computational Tools and Resources for CRISPR/Cas Genome Editing. Genomics, Proteomics & Bioinformatics. https://doi.org/10.1016/j.gpb.2022.02.006
Safi, C., Zebib, B., Merah, O., Pontalier, P., & Vaca-Garcia, C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable & Sustainable Energy Reviews, 35, 265-278. https://doi.org/10.1016/j.rser.2014.04.007
Shah, M. M. R., Liang, Y., Cheng, J. J., & Daroch, M. (2016). Astaxanthin-Producing Green Microalga Haematococcus pluvialis: From Single Cell to High Value Commercial Products. Frontiers in Plant Science, 7, 531. https://doi.org/10.3389/fpls.2016.00531
Jeon, S., Lim, J., Lee, H., Shin, S., Kang, N. K., Park, Y., Oh, H., Jeong, W., Jeong, B., & Chang, Y. K. (2017). Current status and perspectives of genome editing technology for microalgae. Biotechnology for Biofuels, 10(1), 267. https://doi.org/10.1186/s13068-017-0957-z
info:eu-repo/semantics/article
Yue Yang, Jeong Min Seo, Nguyen, A., Pham, T. X., Hea Jin Park, Park, Y., Kim, B., Bruno, R. S., & Jiyoung Lee. (2011). Astaxanthin-Rich Extract from the Green Alga Haematococcus pluvialis Lowers Plasma Lipid Concentrations and Enhances Antioxidant Defense in Apolipoprotein E Knockout Mice. The Journal of Nutrition, 141(9), 1611-1617. https://doi.org/10.3945/jn.111.142109
Zambrano, J., García-Encina, P. A., Jiménez, J. J., Ciardi, M., Bolado-Rodríguez, S., & Irusta-Mata, R. (2023). Removal of veterinary antibiotics in swine manure wastewater using microalgae-bacteria consortia in a pilot scale photobioreactor. Environmental Technology & Innovation, 103190. https://doi.org/10.1016/j.eti.2023.103190
Zetsche, B., Gootenberg, J., Abudayyeh, O., Slaymaker, I., Makarova, K., Essletzbichler, P., Volz, S., Joung, J., van der Oost, J., Regev, A., Koonin, E., & Zhang, F. (2015). Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell, 163(3), 759-771. https://doi.org/10.1016/j.cell.2015.09.038
Zhang, S., Guo, F., Yan, W., Dai, Z., Dong, W., Zhou, J., Zhang, W., Xin, F., & Jiang, M. (2020). Recent Advances of CRISPR/Cas9-Based Genetic Engineering and Transcriptional Regulation in Industrial Biology. Frontiers in Bioengineering and Biotechnology, 7, 459. https://doi.org/10.3389/fbioe.2019.00459
Zhang, Y., Jiang, J., Shi, T., Sun, X., Zhao, Q., Huang, H., & Ren, L. (2019). Application of the CRISPR/Cas system for genome editing in microalgae. Applied Microbiology and Biotechnology, 103(8), 3239-3248. https://doi.org/10.1007/s00253-019-09726-x
Zhu, Y. (2022). Advances in CRISPR/Cas9. BioMed Research International, 1-13. https://doi.org/10.1155/2022/9978571
http://purl.org/coar/resource_type/c_6501
Xu, P., Li, J., Qian, J., Wang, B., Liu, J., Xu, R., Chen, P., & Zhou, W. (2023). Recent advances in CO2 fixation by microalgae and its potential contribution to carbon neutrality. Chemosphere (Oxford), 319, 137987. https://doi.org/10.1016/j.chemosphere.2023.137987
http://purl.org/redcol/resource_type/ARTREF
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Yoshimitsu, Y., Abe, J., & Harayama, S. (2018). Cas9-guide RNA ribonucleoprotein-induced genome editing in the industrial green alga Coccomyxa sp. strain KJ. Biotechnology for Biofuels, 11(1), 326. https://doi.org/10.1186/s13068-018-1327-1
Xu, H., Xiao, T., Chen, C., Li, W., Meyer, C. A., Wu, Q., Wu, D., Cong, L., Zhang, F., Liu, J. S., Brown, M., & Liu, X. S. (2015). Sequence determinants of improved CRISPR sgRNA design. Genome Research, 25(8), 1147-1157. https://doi.org/10.1101/gr.191452.115
Shams, F., Bayat, H., Mohammadian, O., Mahboudi, S., Vahidnezhad, H., Soosanabadi, M., & Rahimpour, A. (2022). Advance trends in targeting homology-directed repair for accurate gene editing: An inclusive review of small molecules and modified CRISPR-Cas9 systems. BioImpacts: BI, 12(4), 371-391. https://doi.org/10.34172/bi.2022.23871
Trovão, M., Schüler, L. M., Machado, A., Bombo, G., Navalho, S., Barros, A., Pereira, H., Silva, J., Freitas, F., & Varela, J. (2022). Random Mutagenesis as a Promising Tool for Microalgal Strain Improvement towards Industrial Production. Marine Drugs, 20(7), 440. https://doi.org/10.3390/md20070440
Sharma, P. K., Saharia, M., Srivstava, R., Kumar, S., & Sahoo, L. (2018). Tailoring Microalgae for Efficient Biofuel Production. Frontiers in Marine Science, 5. https://doi.org/10.3389/fmars.2018.00382
Shin, S., Lim, J., Koh, H. G., Kim, E. K., Kang, N. K., Jeon, S., Kwon, S., Shin, W., Lee, B., Hwangbo, K., Kim, J., Ye, S. H., Yun, J., Seo, H., Oh, H., Kim, K., Kim, J., Jeong, W., Chang, Y. K., & Jeong, B. (2016). CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Scientific Reports, 6(1), 27810. https://doi.org/10.1038/srep27810
Shin, Y. S., Jeong, J., Nguyen, T. H. T., Kim, J. Y. H., Jin, E., & Sim, S. J. (2019). Targeted knockout of phospholipase A2 to increase lipid productivity in Chlamydomonas reinhardtii for biodiesel production. Bioresource Technology, 271, 368-374. https://doi.org/10.1016/j.biortech.2018.09.121
Sledzinski, P., Dabrowska, M., Nowaczyk, M., & Olejniczak, M. (2021). Paving the way towards precise and safe CRISPR genome editing. Biotechnology Advances, 49, 107737.
Spicer, A., & Molnar, A. (2018). Gene Editing of Microalgae: Scientific Progress and Regulatory Challenges in Europe. Biology (Basel, Switzerland), 7(1), 21. https://doi.org/10.3390/biology7010021
Tian, P., Wang, J., Shen, X., Rey, J. F., Yuan, Q., & Yan, Y. (2017). Fundamental CRISPR-Cas9 tools and current applications in microbial systems. Synthetic and Systems Biotechnology, 2(3), 219-225. https://doi.org/10.1016/j.synbio.2017.08.006
Uddin, F., Rudin, C. M., & Sen, T. (2020). CRISPR Gene Therapy: Applications, Limitations, and Implications for the Future. Frontiers in Oncology, 10, 1387. https://doi.org/10.3389/fonc.2020.01387
Wu, K., Ying, K., Zhou, J., Liu, D., Liu, L., Tao, Y., Hanotu, J., Zhu, X., & Cai, Z. (2021). Optimizing the growth of Haematococcus pluvialis based on a novel microbubble-driven photobioreactor. iScience, 24(12), 103461. https://doi.org/10.1016/j.isci.2021.103461
Van der Oost, J., Jore, M. M., Westra, E. R., Lundgren, M., & Brouns, S. J. J. (2009). CRISPR-based adaptive and heritable immunity in prokaryotes. Trends in Biochemical Sciences (Amsterdam. Regular Ed.), 34(8), 401-407. https://doi.org/10.1016/j.tibs.2009.05.002
Velmurugan, A., & Muthukaliannan, G. K. (2022). Genetic manipulation for carotenoid production in microalgae an overview. Current Research in Biotechnology, 4, 221-228.
Vidhyavathi, R., Venkatachalam, L., Sarada, R., & Ravishankar, G. A. (2008). Regulation of carotenoid biosynthetic genes expression and carotenoid accumulation in the green alga Haematococcus pluvialis under nutrient stress conditions. Journal of experimental botany, 59(6), 1409-1418.
Wang, Q., Lu, Y., Xin, Y., Wei, L., Huang, S., & Xu, J. (2016). Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9. The Plant Journal: For Cell and Molecular Biology, 88(6), 1071-1081. https://doi.org/10.1111/tpj.13307
Waissman-Levy, N., Leu, S., Khozin-Goldberg, I., & Boussiba, S. (2019). Manipulation of trophic capacities in Haematococcus pluvialis enables low-light mediated growth on glucose and astaxanthin formation in the dark. Algal Research, 40, 101497.
Wei, L., Xin, Y., Wang, Q., Yang, J., Hu, H., & Xu, J. (2017). RNAi‐based targeted gene knockdown in the model oleaginous microalgae Nannochloropsis oceanica. The Plant Journal: For Cell and Molecular Biology, 89(6), 1236-1250. https://doi.org/10.1111/tpj.13411
Jiang, W. Z., & Weeks, D. P. (2017). A gene-within-a-gene Cas9/sgRNA hybrid construct enables gene editing and gene replacement strategies in Chlamydomonas reinhardtii. Algal Research, 26(C), 474-480. https://doi.org/10.1016/j.algal.2017.04.001
Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169(12), 5429-5433. https://doi.org/10.1128/jb.169.12.5429-5433.1987
Publication
Universidad de Bogotá Jorge Tadeo Lozano
Ajjawi, I., Verruto, J., Aqui, M., Soriaga, L. B., Coppersmith, J., Kwok, K., Peach, L., Orchard, E., Kalb, R., Xu, W., Carlson, T. J., Francis, K., Konigsfeld, K., Bartalis, J., Schultz, A., Lambert, W., Schwartz, A. S., Brown, R., & Moellering, E. R. (2017). Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nature Biotechnology, 35(7), 647-652. https://doi.org/10.1038/nbt.3865
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Revista Mutis - 2024
https://creativecommons.org/licenses/by-nc-sa/4.0
Español
Martinez Tapiero, Dalia Yirasol
Hu, L., Feng, S., Liang, G., Du, J., Li, A., & Niu, C. (2021). CRISPR/Cas9-induced β-carotene hydroxylase mutation in Dunaliella salina CCAP19/18. AMB Express, 11(1), 83. https://doi.org/10.1186/s13568-021-01242-4
https://revistas.utadeo.edu.co/index.php/mutis/article/view/uso-tecnologias-crispr-cas9microalgas-aplicado-obtencion-biotecnologicos
Martínez Rentería , Maria Anghela
Revista Mutis
application/pdf
Anjos, M., Fernandes, B. D., Vicente, A. A., Teixeira, J. A., & Dragone, G. (2013). Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresource Technology, 139, 149-154. https://doi.org/10.1016/j.biortech.2013.04.032
Camacho Kurmen , Judith Elena
Artículo de revista
1
14
ciencias naturales
Tecnologías de modificación genética
Productos biotecnologicos
Metabolitos
CRISPR-CAS9
microalga
Ahirwar, A., Meignen, G., Khan, M. J., Sirotiya, V., Scarsini, M., Roux, S., ... Vinayak, V. (2021). Light modulates transcriptomic dynamics upregulating astaxanthin accumulation in Haematococcus: A review. Bioresource Technology, 340, 125707. https://doi.org/10.1016/j.biortech.2021.125707
Las microalgas se destacan por su capacidad de adaptarse a diferentes medios de cultivo, participación en captura de CO2  y productos de interés biotecnológico cómo biocombustibles, proteínas, biofertilizantes, suplementos alimenticios, pigmentos, entre otros. Se han trabajado diferentes tipos de estrés como variación del pH, deficiencia de nutrientes, estrés salino, cambios en la temperatura y alta irradiancia con el fin de aumentar la producción de metabolitos aplicado a diferentes industrias; sin embargo, la demanda de los productos biotecnológicos se ha incrementado ante las necesidades de la población, por lo que el uso de tecnologías de modificación genética ha surgido como una alternativa  durante la última década gracias a la capacidad y eficiencia que muestran los métodos como mutagénesis aleatoria, supresión de genes y crispr-cas9. Se propone como objetivo conocer la aplicación del crispr-cas9 en microalgas relacionado con la obtención de productos biotecnológicos de interés industrial. Se determinó que esta tecnología aplicada en las microalgas con uso industrial incrementa la obtención de productos de interés biotecnológico como lípidos, carotenoides, proteínas y enzimas recombinantes.
Araujo Abad, S. y Collahuazo Reinoso, Y. (2019). Producción de Biofertilizantes a Partir de Microalgas. CEDAMAZ, 9(2), 81–87.
Das, D. (2016). Engineering Spirulina for Enhanced Medicinal Application. Algal Biorefinery: An Integrated Approach (pp. 235-252). Springer International Publishing AG. https://doi.org/10.1007/978-3-319-22813-6_11
Hopes, A., Nekrasov, V., Kamoun, S., & Mock, T. (2016). Editing of the urease gene by CRISPR-Cas in the diatom Thalassiosira pseudonana. Plant Methods, 12(1), 49. https://doi.org/10.1186/s13007-016-0148-0
Han, H. (2018). RNA Interference to Knock Down Gene Expression. Disease Gene Identification. Springer New York. https://doi.org/10.1007/978-1-4939-7471-9_16
Haft, D. H., Selengut, J., Mongodin, E. F., & Nelson, K. E. (2005). A Guild of 45 CRISPR-Associated (Cas) Protein Families and Multiple CRISPR/Cas Subtypes Exist in Prokaryotic Genomes. PLoS Computational Biology, 1(6), e60. https://doi.org/10.1371/journal.pcbi.0010060
Greiner, A., Kelterborn, S., Evers, H., Kreimer, G., Sizova, I., & Hegemann, P. (2017). Targeting of Photoreceptor Genes in Chlamydomonas reinhardtii via Zinc-Finger Nucleases and CRISPR/Cas9. The Plant Cell, 29(10), 2498-2518. https://doi.org/10.1105/tpc.17.00659
Gómez, L., Orozco, M. I., Quiroga, C., Díaz, J. C., Huérfano, J., Díaz, L. E., Rodríguez, J., & Camacho K., J. E. (2019). Producción de Astaxantina y expresión de genes en Haematococcus pluvialis (Chlorophyceae, Volvocales) bajo condiciones de estrés por deficiencia de nitrógeno y alta irradiancia: Producción de astaxantina y expresión de genes en H. pluvialis. Mutis, 9(2), 7-24. https://doi.org/10.21789/22561498.1532
Gómez Luna, L. M. (2007). Microalgas: aspectos ecologicos y biotecnologicos. Revista cubana de química, 19(2), 3.
Georgianna, D. R., Hannon, M. J., Marcuschi, M., Wu, S., Botsch, K., Lewis, A. J., ... & Mayfield, S. P. (2013). Production of recombinant enzymes in the marine alga Dunaliella tertiolecta. Algal Research, 2(1), 2-9.
Galarza, V. O. (2019). Carbohidratos y proteínas en microalgas: potenciales alimentos funcionales. Brazilian Journal of Food Technology, 22. https://doi.org/10.1590/1981-6723.04319
Esquivel Álvarez, A., Quesada Morales, E., Villegas Calero, M. P., Matarrita Brenes, D., Rojas Salas, M. F., Madrigal Redondo, G., Chavarría Rojas, M., & Baltodano Viales, E. (2022). CRISPR-Cas Technology, the Tool of the Future. European Journal of Biology and Biotechnology, 3(2), 1-9. https://doi.org/10.24018/ejbio.2022.3.2.332
Baek, K., Kim, D. H., Jeong, J., Sim, S. J., Melis, A., Kim, J., Jin, E. & Bae, S. (2016). DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Scientific Reports, 6(1), 30620. https://doi.org/10.1038/srep30620
Dhamad, A. E., & Lessner, D. J. (2020). A CRISPRi-dCas9 System for Archaea and Its Use to Examine Gene Function during Nitrogen Fixation by Methanosarcina acetivorans. Applied and Environmental Microbiology, 86(21). https://doi.org/10.1128/AEM.01402-20
Edraki, A., Mir, A., Ibraheim, R., Gainetdinov, I., Yoon, Y., Song, C., Cao, Y., Gallant, J., Xue, W., Rivera-Pérez, J. A., & Sontheimer, E. J. (2019). A Compact, High-Accuracy Cas9 with a Dinucleotide PAM for in Vivo Genome Editing. Molecular Cell, 73(4), 714-726.e4. https://doi.org/10.1016/j.molcel.2018.12.003
Dalvie, N. C., Lorgeree, T., Biedermann, A. M., Love, K. R., & Love, J. C. (2022). Simplified Gene Knockout by CRISPR-Cas9-Induced Homologous Recombination. ACS Synthetic Biology, 11(1), 497-501. https://doi.org/10.1021/acssynbio.1c00194
Castillo, O., Torres-Badajoz, S., Núñez-Colín, C., Peña-Caballero, V., Herrera Méndez, C. y Rodríguez-Núñez, J. (2017). Producción de biodiésel a partir de microalgas: avances y perspectivas biotecnológicas. Hidrobiológica, 27(3), 337-352. https://search.proquest.com/docview/2097445304
Bernheim, A., Calvo-Villamañán, A., Basier, C., Cui, L., Rocha, E. P. C., Touchon, M., & Bikard, D. (2017). Inhibition of NHEJ repair by type II-A CRISPR-Cas systems in bacteria. Nature Communications, 8(1), 2094-9. https://doi.org/10.1038/s41467-017-02350-1
Bharathkumar, N., Sunil, A., Meera, P., Aksah, S., Kannan, M., Saravanan, K. M., & Anand, T. (2022). CRISPR/Cas-Based Modifications for Therapeutic Applications: A Review. Molecular Biotechnology, 64(4), 355-372. https://doi.org/10.1007/s12033-021-00422-8
Burmistrz, M., Krakowski, K., & Krawczyk-Balska, A. (2020). RNA-Targeting CRISPR–Cas Systems and Their Applications. International Journal of Molecular Sciences, 21(3), 1122. https://doi.org/10.3390/ijms21031122
Coronado-Reyes, J. A., Salazar-Torres, J. A., Juárez-Campos, B., & González-Hernández, J. C. (2022). Chlorella vulgaris, a microalgae important to be used in Biotechnology: a review. Ciência E Tecnología De Alimentos, 42. https://doi.org/10.1590/fst.37320
Camacho Kurmen, J. E., González, G. y Klotz, B. (2013). Producción de Astaxantina en Haematococcus pluvialis bajo diferentes condiciones de estrés. Nova, 11(19), 93. https://doi.org/10.22490/24629448.1022
Chang, K. S., Kim, J., Park, H., Hong, S., Lee, C., & Jin, E. (2020). Enhanced lipid productivity in AGP knockout marine microalga Tetraselmis sp. using a DNA-free CRISPR-Cas9 RNP method. Bioresource Technology, 303, 122932. https://doi.org/10.1016/j.biortech.2020.122932
Chaumont, D. & Thépenier, C. (1995). Carotenoid content in growing cells of Haematococcus pluvialis during a sunlight cycle. Journal of applied phycology, 7, 529-537
Chen, E., Lin-Shiao, E., Trinidad, M., Saffari Doost, M., Colognori, D., & Doudna, J. A. (2022). Decorating chromatin for enhanced genome editing using CRISPR-Cas9. Nevada RNformation, 119(49), e2204259119. https://doi.org/10.1073/pnas.2204259119
genetic modification technologies
CRISPR-CAS9
Microalgae
Microalgae stand out due to their ability to adapt to different cultivation environments and capture CO2 and products of biotechnological interest such as biofuels, proteins, biofertilizers, food supplements, pigments, among others. Different types of stress have been used in different industries such as pH variation, nutrient deficiency, salt stress, changes in temperature and high irradiance in order to increase the production of metabolites. However, the demand for biotechnological products has increased due to the needs of the population. For this reason, the use of genetic modification technologies has emerged during the last decade as an alternative, thanks to the capacity and efficiency shown by methods such as random mutagenesis, gene deletion and crispr-cas9. The objective of this research is to apply crispr-cas9 in microalgae to obtain biotechnological products that are highly demanded by the industry. The results revealed that applying this technology to microalgae for industrial use increases the production of highly demanded biotechnological products such as lipids, carotenoids, proteins and recombinant enzymes.
metabolitos
Metabolites
Biotechnological products
Natural sciences
Use of CRISPR-CAS9 Technologies in Microalgae to Obtain Highly Demanded Biotechnological Products for the Industry
CRISPR-CAS
microalga
Produtos biotecnológicos
tecnologias de modificação genética
Journal article
https://revistas.utadeo.edu.co/index.php/mutis/article/download/uso-tecnologias-crispr-cas9microalgas-aplicado-obtencion-biotecnologicos/2106
2024-01-01T00:00:00Z
2024-01-01T00:00:00Z
2024-01-01
2256-1498
https://doi.org/10.21789/22561498.2044
1
28
10.21789/22561498.2044
institution UNIVERSIDAD JORGE TADEO LOZANO
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADJORGETADEOLOZANO/logo.png
country_str Colombia
collection Revista Mutis
title Uso de tecnologías CRISPR-CAS9 en microalgas aplicado a la obtención de productos biotecnológicos de interés industrial
spellingShingle Uso de tecnologías CRISPR-CAS9 en microalgas aplicado a la obtención de productos biotecnológicos de interés industrial
Martinez Tapiero, Dalia Yirasol
Martínez Rentería , Maria Anghela
Camacho Kurmen , Judith Elena
ciencias naturales
Tecnologías de modificación genética
Productos biotecnologicos
Metabolitos
CRISPR-CAS9
microalga
genetic modification technologies
CRISPR-CAS9
Microalgae
metabolitos
Metabolites
Biotechnological products
Natural sciences
CRISPR-CAS
microalga
Produtos biotecnológicos
tecnologias de modificação genética
title_short Uso de tecnologías CRISPR-CAS9 en microalgas aplicado a la obtención de productos biotecnológicos de interés industrial
title_full Uso de tecnologías CRISPR-CAS9 en microalgas aplicado a la obtención de productos biotecnológicos de interés industrial
title_fullStr Uso de tecnologías CRISPR-CAS9 en microalgas aplicado a la obtención de productos biotecnológicos de interés industrial
title_full_unstemmed Uso de tecnologías CRISPR-CAS9 en microalgas aplicado a la obtención de productos biotecnológicos de interés industrial
title_sort uso de tecnologías crispr-cas9 en microalgas aplicado a la obtención de productos biotecnológicos de interés industrial
title_eng Use of CRISPR-CAS9 Technologies in Microalgae to Obtain Highly Demanded Biotechnological Products for the Industry
description Las microalgas se destacan por su capacidad de adaptarse a diferentes medios de cultivo, participación en captura de CO2  y productos de interés biotecnológico cómo biocombustibles, proteínas, biofertilizantes, suplementos alimenticios, pigmentos, entre otros. Se han trabajado diferentes tipos de estrés como variación del pH, deficiencia de nutrientes, estrés salino, cambios en la temperatura y alta irradiancia con el fin de aumentar la producción de metabolitos aplicado a diferentes industrias; sin embargo, la demanda de los productos biotecnológicos se ha incrementado ante las necesidades de la población, por lo que el uso de tecnologías de modificación genética ha surgido como una alternativa  durante la última década gracias a la capacidad y eficiencia que muestran los métodos como mutagénesis aleatoria, supresión de genes y crispr-cas9. Se propone como objetivo conocer la aplicación del crispr-cas9 en microalgas relacionado con la obtención de productos biotecnológicos de interés industrial. Se determinó que esta tecnología aplicada en las microalgas con uso industrial incrementa la obtención de productos de interés biotecnológico como lípidos, carotenoides, proteínas y enzimas recombinantes.
description_eng Microalgae stand out due to their ability to adapt to different cultivation environments and capture CO2 and products of biotechnological interest such as biofuels, proteins, biofertilizers, food supplements, pigments, among others. Different types of stress have been used in different industries such as pH variation, nutrient deficiency, salt stress, changes in temperature and high irradiance in order to increase the production of metabolites. However, the demand for biotechnological products has increased due to the needs of the population. For this reason, the use of genetic modification technologies has emerged during the last decade as an alternative, thanks to the capacity and efficiency shown by methods such as random mutagenesis, gene deletion and crispr-cas9. The objective of this research is to apply crispr-cas9 in microalgae to obtain biotechnological products that are highly demanded by the industry. The results revealed that applying this technology to microalgae for industrial use increases the production of highly demanded biotechnological products such as lipids, carotenoids, proteins and recombinant enzymes.
author Martinez Tapiero, Dalia Yirasol
Martínez Rentería , Maria Anghela
Camacho Kurmen , Judith Elena
author_facet Martinez Tapiero, Dalia Yirasol
Martínez Rentería , Maria Anghela
Camacho Kurmen , Judith Elena
topicspa_str_mv ciencias naturales
Tecnologías de modificación genética
Productos biotecnologicos
Metabolitos
CRISPR-CAS9
microalga
topic ciencias naturales
Tecnologías de modificación genética
Productos biotecnologicos
Metabolitos
CRISPR-CAS9
microalga
genetic modification technologies
CRISPR-CAS9
Microalgae
metabolitos
Metabolites
Biotechnological products
Natural sciences
CRISPR-CAS
microalga
Produtos biotecnológicos
tecnologias de modificação genética
topic_facet ciencias naturales
Tecnologías de modificación genética
Productos biotecnologicos
Metabolitos
CRISPR-CAS9
microalga
genetic modification technologies
CRISPR-CAS9
Microalgae
metabolitos
Metabolites
Biotechnological products
Natural sciences
CRISPR-CAS
microalga
Produtos biotecnológicos
tecnologias de modificação genética
citationvolume 14
citationissue 1
publisher Universidad de Bogotá Jorge Tadeo Lozano
ispartofjournal Revista Mutis
source https://revistas.utadeo.edu.co/index.php/mutis/article/view/uso-tecnologias-crispr-cas9microalgas-aplicado-obtencion-biotecnologicos
language Español
format Article
rights info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Revista Mutis - 2024
https://creativecommons.org/licenses/by-nc-sa/4.0
references Ng, I., Keskin, B. B., & Tan, S. (2020). A Critical Review of Genome Editing and Synthetic Biology Applications in Metabolic Engineering of Microalgae and Cyanobacteria. Biotechnology Journal, 15(8), e1900228-n/a. https://doi.org/10.1002/biot.201900228
Luo, Q., Zou, X., Wang, C., Li, Y., & Hu, Z. (2021). The roles of Cullins E3 ubiquitin ligases in the lipid biosynthesis of the green microalgae Chlamydomonas reinhardtii. International Journal of Molecular Sciences, 22(9), 4695. https://doi.org/10.3390/IJMS22094695
Machado Sierra, E., Serrano, M. C., Manares, A., Guerra, A., & Aranguren Díaz, Y. (2021). Microalgae: Potential for Bioeconomy in Food Systems. Applied Sciences, 11(23), 11316. https://doi.org/10.3390/app112311316
Makarova, K. S., Grishin, N. V., Shabalina, S. A., Wolf, Y. I., & Koonin, E. V. (2006). A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biology Direct, 1(1), 7. https://doi.org/10.1186/1745-6150-1-7
Makarova, K. S., Wolf, Y. I., Iranzo, J., Shmakov, S. A., Alkhnbashi, O. S., Brouns, S. J. J., Charpentier, E., Cheng, D., Haft, D. H., Horvath, P., Moineau, S., Mojica, F. J. M., Scott, D., Shah, S. A., Siksnys, V., Terns, M. P., Venclovas, Č, White, M. F., Yakunin, A. F., . . . Koonin, E. V. (2020). Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nature Reviews. Microbiology, 18(2), 67-83. https://doi.org/10.1038/s41579-019-0299-x
Mendoza, H., Jara, A. D. L., Freijanes, K., Cormona, L., Ramos, A. A., Duarte, V. D. S., et al. (2008). Characterization of Dunaliella salina strains by flow cytometry: A new approach to select carotenoid hyperproducing strains. Electronic Journal of Biotechnology, 11(4), 5–6. https ://doi.org/10.2225/vol11 –issue 4-fullt ext-2.
Musunuru, K., Chadwick, A. C., Mizoguchi, T., Garcia, S. P., DeNizio, J. E., Reiss, C. W., Wang, K., Iyer, S., Dutta, C., Clendaniel, V., Amaonye, M., Beach, A., Berth, K., Biswas, S., Braun, M. C., Chen, H., Colace, T. V., Ganey, J. D., Gangopadhyay, S. A., . . . Kathiresan, S. (2021). In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature (London), 593(7859), 429-434. https://doi.org/10.1038/s41586-021-03534-y
Nino Castillo, C. M., Rodriguez Rivera, F. C., Diaz, L. E., & Lancheros Diaz, A. G. (2017). Evaluación de las condiciones de crecimiento celular para la producción de astaxantina a patir de la microalga Haematococcus pluvialis. Nova: Publicación Científica En Ciencias Biomédicas, 15(28), 19-31. https://doi.org/10.22490/24629448.2073
Lin, W., & Ng, I. (2020). Development of CRISPR/Cas9 system in Chlorella vulgaris FSP-E to enhance lipid accumulation. Enzyme and Microbial Technology, 133, 109458. https://doi.org/10.1016/j.enzmictec.2019.109458
Nymark, M., Sharma, A. K., Sparstad, T., Bones, A. M., & Winge, P. (2016). A CRISPR/Cas9 system adapted for gene editing in marine algae. Scientific Reports, 6(1), 24951. https://doi.org/10.1038/srep24951
Ohlrogge, J., & Browse, J. (1995). Lipid biosynthesis. The plant cell, 7(7), 957.
Oslan, S. N. H., Shoparwe, N. F., Yusoff, A. H., Rahim, A. A., Chang, C. S., Tan, J. S., Oslan, S. N., Arumugam, K., Ariff, A. B., Sulaiman, A. Z., & Mohamed, M. S. (2021). A Review on Haematococcus pluvialis Bioprocess Optimization of Green and Red Stage Culture Conditions for the Production of Natural Astaxanthin. Biomolecules (Basel, Switzerland), 11(2), 256. https://doi.org/10.3390/biom11020256
Patel, V. K., Soni, N., Prasad, V., Sapre, A., Dasgupta, S., & Bhadra, B. (2019). CRISPR–Cas9 System for Genome Engineering of Photosynthetic Microalgae. Molecular Biotechnology, 61(8), 541-561. https://doi.org/10.1007/s12033-019-00185-3
Porta Helena. (2021). Conceptos básicos y avances de la transformación genética de las microalgas, 25(5), 127-139.
Ren, Y., Deng, J., Huang, J., Wu, Z., Yi, L., Bi, Y., & Chen, F. (2021). Using green alga Haematococcus pluvialis for astaxanthin and lipid co-production: Advances and outlook. Bioresource Technology, 340, 125736. https://doi.org/10.1016/j.biortech.2021.125736
Liu, M., Rehman, S., Tang, X., Gu, K., Fan, Q., Chen, D., & Ma, W. (2019). Methodologies for Improving HDR Efficiency. Frontiers in Genetics, 9, 691. https://doi.org/10.3389/fgene.2018.00691
Liao, C., & Beisel, C. L. (2021). The tracrRNA in CRISPR Biology and Technologies. Annual Review of Genetics, 55(1), 161-181. https://doi.org/10.1146/annurev-genet-071719-022559
Schüler, L., Greque de Morais, E., Trovão, M., Machado, A., Carvalho, B., Carneiro, M., Maia, I., Soares, M., Duarte, P., Barros, A., Pereira, H., Silva, J., & Varela, J. (2020). Isolation and Characterization of Novel Chlorella Vulgaris Mutants with Low Chlorophyll and Improved Protein Contents for Food Applications. Frontiers in Bioengineering and Biotechnology, 8, 469. https://doi.org/10.3389/fbioe.2020.00469
Kleinstiver, B. P., Prew, M. S., Tsai, S. Q., Topkar, V. V., Nguyen, N. T., Zheng, Z., Gonzales, A. P. W., Li, Z., Peterson, R. T., Yeh, J. J., Aryee, M. J., & Joung, J. K. (2015). Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature (London), 523(7561), 481-485. https://doi.org/10.1038/nature14592
Jiang, W., Brueggeman, A. J., Horken, K. M., Plucinak, T. M., & Weeks, D. P. (2014). Successful Transient Expression of Cas9 and Single Guide RNA Genes in Chlamydomonas reinhardtii. Eukaryotic Cell, 13(11), 1465-1469. https://doi.org/10.1128/EC.00213-14
Jiang, X., Liu, Y., Yin, X., Deng, Z., Zhang, S., Ma, C., & Wang, L. (2023). Efficient removal of chromium by a novel biochar-microalga complex: Mechanism and performance. Environmental Technology & Innovation, 31, 103156. https://doi.org/10.1016/j.eti.2023.103156
Kao, P., & Ng, I. (2017). CRISPRi mediated phosphoenolpyruvate carboxylase regulation to enhance the production of lipid in Chlamydomonas reinhardtii. Bioresource Technology, 245(Pt B), 1527-1537. https://doi.org/10.1016/j.biortech.2017.04.111
Kelterborn, S., Boehning, F., Sizova, I., Baidukova, O., Evers, H., & Hegemann, P. (2022). Gene Editing in Green Alga Chlamydomonas reinhardtii via CRISPR-Cas9 Ribonucleoproteins. Methods in molecular biology, 45-65. https://doi.org/10.1007/978-1-0716-1791-5_3
Kim, J., Chang, K. S., Lee, S., & Jin, E. (2021). Establishment of a Genome Editing Tool Using CRISPR-Cas9 in Chlorella vulgaris UTEX395. International Journal of Molecular Sciences, 22(2), 480. https://doi.org/10.3390/ijms22020480
Kim, M., Kim, S., Kim, Y., & Choi, T. (2023). Enhancement of Chlorella transformation efficacy by insert fragmentation. Algal Research (Amsterdam), 72, 103146. https://doi.org/10.1016/j.algal.2023.103146
Kolesnik, M. V., Fedorova, I., Karneyeva, K. A., Artamonova, D. N., & Severinov, K. V. (2021). Type III CRISPR-Cas Systems: Deciphering the Most Complex Prokaryotic Immune System. Biochemistry (Moscow), 86(10), 1301-1314. https://doi.org/10.1134/S0006297921100114
Li, Y., Xu, H., Han, F., Mu, J., Chen, D., Feng, B., & Zeng, H. (2015). Regulation of lipid metabolism in the green microalga Chlorella protothecoides by heterotrophy–photoinduction cultivation regime. Bioresource Technology, 192, 781-791. https://doi.org/10.1016/j.biortech.2014.07.028
Kong, W., Shen, B., Lyu, H., Kong, J., Ma, J., Wang, Z., & Feng, S. (2021). Review on carbon dioxide fixation coupled with nutrients removal from wastewater by microalgae. Journal of Cleaner Production, 292, 125975. https://doi.org/10.1016/j.jclepro.2021.125975
Koonin, E. V., Makarova, K. S., & Zhang, F. (2017). Diversity, classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology, 37, 67-78. https://doi.org/10.1016/j.mib.2017.05.008
Kühn, R. (2009). Gene knockout protocols (2. ed. ed.). Humana Press.
Lakhawat, S. S., Malik, N., Kumar, V., Kumar, S., & Sharma, P. K. (2022). Implications of CRISPR-Cas9 in Developing Next Generation Biofuel: A Mini-review. Current Protein & Peptide Science, 23(9), 574-584. https://doi.org/10.2174/1389203723666220907110310
Le-Feuvre, R., Moraga-Suazo, P., Gonzalez, J., Martin, S. S., Henríquez, V., Donoso, A., & Agurto-Muñoz, C. (2020). Biotechnology applied to Haematococcus pluvialis Fotow: challenges and prospects for the enhancement of astaxanthin accumulation. Journal of Applied Phycology, 32, 3831-3852.
Li, C., Chu, W., Gill, R. A., Sang, S., Shi, Y., Hu, X., Yang, Y., Zaman, Q. U., & Zhang, B. (2022). Computational Tools and Resources for CRISPR/Cas Genome Editing. Genomics, Proteomics & Bioinformatics. https://doi.org/10.1016/j.gpb.2022.02.006
Safi, C., Zebib, B., Merah, O., Pontalier, P., & Vaca-Garcia, C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable & Sustainable Energy Reviews, 35, 265-278. https://doi.org/10.1016/j.rser.2014.04.007
Shah, M. M. R., Liang, Y., Cheng, J. J., & Daroch, M. (2016). Astaxanthin-Producing Green Microalga Haematococcus pluvialis: From Single Cell to High Value Commercial Products. Frontiers in Plant Science, 7, 531. https://doi.org/10.3389/fpls.2016.00531
Jeon, S., Lim, J., Lee, H., Shin, S., Kang, N. K., Park, Y., Oh, H., Jeong, W., Jeong, B., & Chang, Y. K. (2017). Current status and perspectives of genome editing technology for microalgae. Biotechnology for Biofuels, 10(1), 267. https://doi.org/10.1186/s13068-017-0957-z
Yue Yang, Jeong Min Seo, Nguyen, A., Pham, T. X., Hea Jin Park, Park, Y., Kim, B., Bruno, R. S., & Jiyoung Lee. (2011). Astaxanthin-Rich Extract from the Green Alga Haematococcus pluvialis Lowers Plasma Lipid Concentrations and Enhances Antioxidant Defense in Apolipoprotein E Knockout Mice. The Journal of Nutrition, 141(9), 1611-1617. https://doi.org/10.3945/jn.111.142109
Zambrano, J., García-Encina, P. A., Jiménez, J. J., Ciardi, M., Bolado-Rodríguez, S., & Irusta-Mata, R. (2023). Removal of veterinary antibiotics in swine manure wastewater using microalgae-bacteria consortia in a pilot scale photobioreactor. Environmental Technology & Innovation, 103190. https://doi.org/10.1016/j.eti.2023.103190
Zetsche, B., Gootenberg, J., Abudayyeh, O., Slaymaker, I., Makarova, K., Essletzbichler, P., Volz, S., Joung, J., van der Oost, J., Regev, A., Koonin, E., & Zhang, F. (2015). Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell, 163(3), 759-771. https://doi.org/10.1016/j.cell.2015.09.038
Zhang, S., Guo, F., Yan, W., Dai, Z., Dong, W., Zhou, J., Zhang, W., Xin, F., & Jiang, M. (2020). Recent Advances of CRISPR/Cas9-Based Genetic Engineering and Transcriptional Regulation in Industrial Biology. Frontiers in Bioengineering and Biotechnology, 7, 459. https://doi.org/10.3389/fbioe.2019.00459
Zhang, Y., Jiang, J., Shi, T., Sun, X., Zhao, Q., Huang, H., & Ren, L. (2019). Application of the CRISPR/Cas system for genome editing in microalgae. Applied Microbiology and Biotechnology, 103(8), 3239-3248. https://doi.org/10.1007/s00253-019-09726-x
Zhu, Y. (2022). Advances in CRISPR/Cas9. BioMed Research International, 1-13. https://doi.org/10.1155/2022/9978571
Xu, P., Li, J., Qian, J., Wang, B., Liu, J., Xu, R., Chen, P., & Zhou, W. (2023). Recent advances in CO2 fixation by microalgae and its potential contribution to carbon neutrality. Chemosphere (Oxford), 319, 137987. https://doi.org/10.1016/j.chemosphere.2023.137987
Yoshimitsu, Y., Abe, J., & Harayama, S. (2018). Cas9-guide RNA ribonucleoprotein-induced genome editing in the industrial green alga Coccomyxa sp. strain KJ. Biotechnology for Biofuels, 11(1), 326. https://doi.org/10.1186/s13068-018-1327-1
Xu, H., Xiao, T., Chen, C., Li, W., Meyer, C. A., Wu, Q., Wu, D., Cong, L., Zhang, F., Liu, J. S., Brown, M., & Liu, X. S. (2015). Sequence determinants of improved CRISPR sgRNA design. Genome Research, 25(8), 1147-1157. https://doi.org/10.1101/gr.191452.115
Shams, F., Bayat, H., Mohammadian, O., Mahboudi, S., Vahidnezhad, H., Soosanabadi, M., & Rahimpour, A. (2022). Advance trends in targeting homology-directed repair for accurate gene editing: An inclusive review of small molecules and modified CRISPR-Cas9 systems. BioImpacts: BI, 12(4), 371-391. https://doi.org/10.34172/bi.2022.23871
Trovão, M., Schüler, L. M., Machado, A., Bombo, G., Navalho, S., Barros, A., Pereira, H., Silva, J., Freitas, F., & Varela, J. (2022). Random Mutagenesis as a Promising Tool for Microalgal Strain Improvement towards Industrial Production. Marine Drugs, 20(7), 440. https://doi.org/10.3390/md20070440
Sharma, P. K., Saharia, M., Srivstava, R., Kumar, S., & Sahoo, L. (2018). Tailoring Microalgae for Efficient Biofuel Production. Frontiers in Marine Science, 5. https://doi.org/10.3389/fmars.2018.00382
Shin, S., Lim, J., Koh, H. G., Kim, E. K., Kang, N. K., Jeon, S., Kwon, S., Shin, W., Lee, B., Hwangbo, K., Kim, J., Ye, S. H., Yun, J., Seo, H., Oh, H., Kim, K., Kim, J., Jeong, W., Chang, Y. K., & Jeong, B. (2016). CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Scientific Reports, 6(1), 27810. https://doi.org/10.1038/srep27810
Shin, Y. S., Jeong, J., Nguyen, T. H. T., Kim, J. Y. H., Jin, E., & Sim, S. J. (2019). Targeted knockout of phospholipase A2 to increase lipid productivity in Chlamydomonas reinhardtii for biodiesel production. Bioresource Technology, 271, 368-374. https://doi.org/10.1016/j.biortech.2018.09.121
Sledzinski, P., Dabrowska, M., Nowaczyk, M., & Olejniczak, M. (2021). Paving the way towards precise and safe CRISPR genome editing. Biotechnology Advances, 49, 107737.
Spicer, A., & Molnar, A. (2018). Gene Editing of Microalgae: Scientific Progress and Regulatory Challenges in Europe. Biology (Basel, Switzerland), 7(1), 21. https://doi.org/10.3390/biology7010021
Tian, P., Wang, J., Shen, X., Rey, J. F., Yuan, Q., & Yan, Y. (2017). Fundamental CRISPR-Cas9 tools and current applications in microbial systems. Synthetic and Systems Biotechnology, 2(3), 219-225. https://doi.org/10.1016/j.synbio.2017.08.006
Uddin, F., Rudin, C. M., & Sen, T. (2020). CRISPR Gene Therapy: Applications, Limitations, and Implications for the Future. Frontiers in Oncology, 10, 1387. https://doi.org/10.3389/fonc.2020.01387
Wu, K., Ying, K., Zhou, J., Liu, D., Liu, L., Tao, Y., Hanotu, J., Zhu, X., & Cai, Z. (2021). Optimizing the growth of Haematococcus pluvialis based on a novel microbubble-driven photobioreactor. iScience, 24(12), 103461. https://doi.org/10.1016/j.isci.2021.103461
Van der Oost, J., Jore, M. M., Westra, E. R., Lundgren, M., & Brouns, S. J. J. (2009). CRISPR-based adaptive and heritable immunity in prokaryotes. Trends in Biochemical Sciences (Amsterdam. Regular Ed.), 34(8), 401-407. https://doi.org/10.1016/j.tibs.2009.05.002
Velmurugan, A., & Muthukaliannan, G. K. (2022). Genetic manipulation for carotenoid production in microalgae an overview. Current Research in Biotechnology, 4, 221-228.
Vidhyavathi, R., Venkatachalam, L., Sarada, R., & Ravishankar, G. A. (2008). Regulation of carotenoid biosynthetic genes expression and carotenoid accumulation in the green alga Haematococcus pluvialis under nutrient stress conditions. Journal of experimental botany, 59(6), 1409-1418.
Wang, Q., Lu, Y., Xin, Y., Wei, L., Huang, S., & Xu, J. (2016). Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9. The Plant Journal: For Cell and Molecular Biology, 88(6), 1071-1081. https://doi.org/10.1111/tpj.13307
Waissman-Levy, N., Leu, S., Khozin-Goldberg, I., & Boussiba, S. (2019). Manipulation of trophic capacities in Haematococcus pluvialis enables low-light mediated growth on glucose and astaxanthin formation in the dark. Algal Research, 40, 101497.
Wei, L., Xin, Y., Wang, Q., Yang, J., Hu, H., & Xu, J. (2017). RNAi‐based targeted gene knockdown in the model oleaginous microalgae Nannochloropsis oceanica. The Plant Journal: For Cell and Molecular Biology, 89(6), 1236-1250. https://doi.org/10.1111/tpj.13411
Jiang, W. Z., & Weeks, D. P. (2017). A gene-within-a-gene Cas9/sgRNA hybrid construct enables gene editing and gene replacement strategies in Chlamydomonas reinhardtii. Algal Research, 26(C), 474-480. https://doi.org/10.1016/j.algal.2017.04.001
Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169(12), 5429-5433. https://doi.org/10.1128/jb.169.12.5429-5433.1987
Ajjawi, I., Verruto, J., Aqui, M., Soriaga, L. B., Coppersmith, J., Kwok, K., Peach, L., Orchard, E., Kalb, R., Xu, W., Carlson, T. J., Francis, K., Konigsfeld, K., Bartalis, J., Schultz, A., Lambert, W., Schwartz, A. S., Brown, R., & Moellering, E. R. (2017). Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nature Biotechnology, 35(7), 647-652. https://doi.org/10.1038/nbt.3865
Hu, L., Feng, S., Liang, G., Du, J., Li, A., & Niu, C. (2021). CRISPR/Cas9-induced β-carotene hydroxylase mutation in Dunaliella salina CCAP19/18. AMB Express, 11(1), 83. https://doi.org/10.1186/s13568-021-01242-4
Anjos, M., Fernandes, B. D., Vicente, A. A., Teixeira, J. A., & Dragone, G. (2013). Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresource Technology, 139, 149-154. https://doi.org/10.1016/j.biortech.2013.04.032
Ahirwar, A., Meignen, G., Khan, M. J., Sirotiya, V., Scarsini, M., Roux, S., ... Vinayak, V. (2021). Light modulates transcriptomic dynamics upregulating astaxanthin accumulation in Haematococcus: A review. Bioresource Technology, 340, 125707. https://doi.org/10.1016/j.biortech.2021.125707
Araujo Abad, S. y Collahuazo Reinoso, Y. (2019). Producción de Biofertilizantes a Partir de Microalgas. CEDAMAZ, 9(2), 81–87.
Das, D. (2016). Engineering Spirulina for Enhanced Medicinal Application. Algal Biorefinery: An Integrated Approach (pp. 235-252). Springer International Publishing AG. https://doi.org/10.1007/978-3-319-22813-6_11
Hopes, A., Nekrasov, V., Kamoun, S., & Mock, T. (2016). Editing of the urease gene by CRISPR-Cas in the diatom Thalassiosira pseudonana. Plant Methods, 12(1), 49. https://doi.org/10.1186/s13007-016-0148-0
Han, H. (2018). RNA Interference to Knock Down Gene Expression. Disease Gene Identification. Springer New York. https://doi.org/10.1007/978-1-4939-7471-9_16
Haft, D. H., Selengut, J., Mongodin, E. F., & Nelson, K. E. (2005). A Guild of 45 CRISPR-Associated (Cas) Protein Families and Multiple CRISPR/Cas Subtypes Exist in Prokaryotic Genomes. PLoS Computational Biology, 1(6), e60. https://doi.org/10.1371/journal.pcbi.0010060
Greiner, A., Kelterborn, S., Evers, H., Kreimer, G., Sizova, I., & Hegemann, P. (2017). Targeting of Photoreceptor Genes in Chlamydomonas reinhardtii via Zinc-Finger Nucleases and CRISPR/Cas9. The Plant Cell, 29(10), 2498-2518. https://doi.org/10.1105/tpc.17.00659
Gómez, L., Orozco, M. I., Quiroga, C., Díaz, J. C., Huérfano, J., Díaz, L. E., Rodríguez, J., & Camacho K., J. E. (2019). Producción de Astaxantina y expresión de genes en Haematococcus pluvialis (Chlorophyceae, Volvocales) bajo condiciones de estrés por deficiencia de nitrógeno y alta irradiancia: Producción de astaxantina y expresión de genes en H. pluvialis. Mutis, 9(2), 7-24. https://doi.org/10.21789/22561498.1532
Gómez Luna, L. M. (2007). Microalgas: aspectos ecologicos y biotecnologicos. Revista cubana de química, 19(2), 3.
Georgianna, D. R., Hannon, M. J., Marcuschi, M., Wu, S., Botsch, K., Lewis, A. J., ... & Mayfield, S. P. (2013). Production of recombinant enzymes in the marine alga Dunaliella tertiolecta. Algal Research, 2(1), 2-9.
Galarza, V. O. (2019). Carbohidratos y proteínas en microalgas: potenciales alimentos funcionales. Brazilian Journal of Food Technology, 22. https://doi.org/10.1590/1981-6723.04319
Esquivel Álvarez, A., Quesada Morales, E., Villegas Calero, M. P., Matarrita Brenes, D., Rojas Salas, M. F., Madrigal Redondo, G., Chavarría Rojas, M., & Baltodano Viales, E. (2022). CRISPR-Cas Technology, the Tool of the Future. European Journal of Biology and Biotechnology, 3(2), 1-9. https://doi.org/10.24018/ejbio.2022.3.2.332
Baek, K., Kim, D. H., Jeong, J., Sim, S. J., Melis, A., Kim, J., Jin, E. & Bae, S. (2016). DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Scientific Reports, 6(1), 30620. https://doi.org/10.1038/srep30620
Dhamad, A. E., & Lessner, D. J. (2020). A CRISPRi-dCas9 System for Archaea and Its Use to Examine Gene Function during Nitrogen Fixation by Methanosarcina acetivorans. Applied and Environmental Microbiology, 86(21). https://doi.org/10.1128/AEM.01402-20
Edraki, A., Mir, A., Ibraheim, R., Gainetdinov, I., Yoon, Y., Song, C., Cao, Y., Gallant, J., Xue, W., Rivera-Pérez, J. A., & Sontheimer, E. J. (2019). A Compact, High-Accuracy Cas9 with a Dinucleotide PAM for in Vivo Genome Editing. Molecular Cell, 73(4), 714-726.e4. https://doi.org/10.1016/j.molcel.2018.12.003
Dalvie, N. C., Lorgeree, T., Biedermann, A. M., Love, K. R., & Love, J. C. (2022). Simplified Gene Knockout by CRISPR-Cas9-Induced Homologous Recombination. ACS Synthetic Biology, 11(1), 497-501. https://doi.org/10.1021/acssynbio.1c00194
Castillo, O., Torres-Badajoz, S., Núñez-Colín, C., Peña-Caballero, V., Herrera Méndez, C. y Rodríguez-Núñez, J. (2017). Producción de biodiésel a partir de microalgas: avances y perspectivas biotecnológicas. Hidrobiológica, 27(3), 337-352. https://search.proquest.com/docview/2097445304
Bernheim, A., Calvo-Villamañán, A., Basier, C., Cui, L., Rocha, E. P. C., Touchon, M., & Bikard, D. (2017). Inhibition of NHEJ repair by type II-A CRISPR-Cas systems in bacteria. Nature Communications, 8(1), 2094-9. https://doi.org/10.1038/s41467-017-02350-1
Bharathkumar, N., Sunil, A., Meera, P., Aksah, S., Kannan, M., Saravanan, K. M., & Anand, T. (2022). CRISPR/Cas-Based Modifications for Therapeutic Applications: A Review. Molecular Biotechnology, 64(4), 355-372. https://doi.org/10.1007/s12033-021-00422-8
Burmistrz, M., Krakowski, K., & Krawczyk-Balska, A. (2020). RNA-Targeting CRISPR–Cas Systems and Their Applications. International Journal of Molecular Sciences, 21(3), 1122. https://doi.org/10.3390/ijms21031122
Coronado-Reyes, J. A., Salazar-Torres, J. A., Juárez-Campos, B., & González-Hernández, J. C. (2022). Chlorella vulgaris, a microalgae important to be used in Biotechnology: a review. Ciência E Tecnología De Alimentos, 42. https://doi.org/10.1590/fst.37320
Camacho Kurmen, J. E., González, G. y Klotz, B. (2013). Producción de Astaxantina en Haematococcus pluvialis bajo diferentes condiciones de estrés. Nova, 11(19), 93. https://doi.org/10.22490/24629448.1022
Chang, K. S., Kim, J., Park, H., Hong, S., Lee, C., & Jin, E. (2020). Enhanced lipid productivity in AGP knockout marine microalga Tetraselmis sp. using a DNA-free CRISPR-Cas9 RNP method. Bioresource Technology, 303, 122932. https://doi.org/10.1016/j.biortech.2020.122932
Chaumont, D. & Thépenier, C. (1995). Carotenoid content in growing cells of Haematococcus pluvialis during a sunlight cycle. Journal of applied phycology, 7, 529-537
Chen, E., Lin-Shiao, E., Trinidad, M., Saffari Doost, M., Colognori, D., & Doudna, J. A. (2022). Decorating chromatin for enhanced genome editing using CRISPR-Cas9. Nevada RNformation, 119(49), e2204259119. https://doi.org/10.1073/pnas.2204259119
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2024-01-01
date_accessioned 2024-01-01T00:00:00Z
date_available 2024-01-01T00:00:00Z
url https://revistas.utadeo.edu.co/index.php/mutis/article/view/uso-tecnologias-crispr-cas9microalgas-aplicado-obtencion-biotecnologicos
url_doi https://doi.org/10.21789/22561498.2044
eissn 2256-1498
doi 10.21789/22561498.2044
citationstartpage 1
citationendpage 28
url2_str_mv https://revistas.utadeo.edu.co/index.php/mutis/article/download/uso-tecnologias-crispr-cas9microalgas-aplicado-obtencion-biotecnologicos/2106
_version_ 1798010175875973120