Anticuerpos inmunomoduladores en el tratamiento del cáncer

Los anticuerpos inmunomoduladores (Aim) tienen la capacidad de modificar el funcionamiento del sistema inmune. Sus efectos sobre los receptores CTLA-4 y PD-1 producen disminución de la activación celular, afectando las acciones de los linfocitos T. La función de ambos receptores es cesar las funciones de las células inmunes autorreactivas que no son destruidas en las estructuras inmunes correspondientes y proteger los tejidos inflamados. Los tumores que expresan estos receptores evitan el reconocimiento por parte de las células inmunes. Los Aim bloquean los receptores y permiten a los linfocitos reconocer y responder ante antígenos neoplásicos. Las investigaciones sobre los fármacos con Aim muestran eficacia moderada en el tratamiento de al... Ver más

Guardado en:

0121-7372

2462-991X

32

2023-03-09

23

28

Revista Repertorio de Medicina y Cirugía - 2023

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id a49657c333007a52ad616e956f845eed
record_format ojs
institution FUNDACIÓN UNIVERSITARIA DE CIENCIA DE LA SALUD
thumbnail https://nuevo.metarevistas.org/FUNDACIONUNIVERSITARIADECIENCIADELASALUD/logo.png
country_str Colombia
collection Revista Repertorio de Medicina y Cirugía
title Anticuerpos inmunomoduladores en el tratamiento del cáncer
spellingShingle Anticuerpos inmunomoduladores en el tratamiento del cáncer
Reyna Villasmil, Eduardo
Anticuerpos inmunomoduladores
Cáncer
Neoplasias malignas
tratamiento
Malignant neoplasms
Cancer
Treatment
Immunomodulatory antibodies
title_short Anticuerpos inmunomoduladores en el tratamiento del cáncer
title_full Anticuerpos inmunomoduladores en el tratamiento del cáncer
title_fullStr Anticuerpos inmunomoduladores en el tratamiento del cáncer
title_full_unstemmed Anticuerpos inmunomoduladores en el tratamiento del cáncer
title_sort anticuerpos inmunomoduladores en el tratamiento del cáncer
title_eng Immunomodulatory antibodies for cancer treatment
description Los anticuerpos inmunomoduladores (Aim) tienen la capacidad de modificar el funcionamiento del sistema inmune. Sus efectos sobre los receptores CTLA-4 y PD-1 producen disminución de la activación celular, afectando las acciones de los linfocitos T. La función de ambos receptores es cesar las funciones de las células inmunes autorreactivas que no son destruidas en las estructuras inmunes correspondientes y proteger los tejidos inflamados. Los tumores que expresan estos receptores evitan el reconocimiento por parte de las células inmunes. Los Aim bloquean los receptores y permiten a los linfocitos reconocer y responder ante antígenos neoplásicos. Las investigaciones sobre los fármacos con Aim muestran eficacia moderada en el tratamiento de algunos casos de cáncer en estadios avanzados. El uso combinado de fármacos tiene potenciales efectos sinérgicos con resultados positivos. Aún deben establecerse los posibles indicadores de éxito terapéutico y la posibilidad de reducir los efectos adversos en el uso clínico. El objetivo de esta revisión fue analizar las funciones y utilidad terapéutica de los anticuerpos inmunomoduladores en el tratamiento del cáncer.  
description_eng Immunomodulatory antibodies (MAbs) acquire the ability to alter the function of the immune system. Their effects on CTLA-4 and PD-1 receptors limit cellular activation, affecting T lymphocytes activity. The role of both receptors is to inhibit autoreactive immune cells not destroyed in the corresponding immune structures and to protect inflamed tissues. Tumors expressing these receptors evade immune cells recognition. MAbs block the receptors and enable lymphocytes to recognize and respond to neoplastic antigens. Research on MAbs drugs shows moderate efficacy in the treatment of some cases of advanced cancer. The combination of drugs has potentially synergistic mechanisms with positive results. Possible indicators of therapeutic success and the likelihood of reducing the adverse effects in clinical use, have yet to be established. The aim of this review was to analyze the roles and usefulness of immunomodulatory antibodies for cancer therapy.  
author Reyna Villasmil, Eduardo
author_facet Reyna Villasmil, Eduardo
topicspa_str_mv Anticuerpos inmunomoduladores
Cáncer
Neoplasias malignas
tratamiento
topic Anticuerpos inmunomoduladores
Cáncer
Neoplasias malignas
tratamiento
Malignant neoplasms
Cancer
Treatment
Immunomodulatory antibodies
topic_facet Anticuerpos inmunomoduladores
Cáncer
Neoplasias malignas
tratamiento
Malignant neoplasms
Cancer
Treatment
Immunomodulatory antibodies
citationvolume 32
citationissue 1
publisher Sociedad de Cirugía de Bogotá, Hospital de San José y Fundación Universitaria de Ciencias de la Salud
ispartofjournal Revista Repertorio de Medicina y Cirugía
source https://revistas.fucsalud.edu.co/index.php/repertorio/article/view/1361
language Español
format Article
rights https://creativecommons.org/licenses/by-nc-sa/4.0/
Revista Repertorio de Medicina y Cirugía - 2023
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references Zhang L, Lu Y. Follow-up Care for Patients Receiving Immune Checkpoint Inhibitors. Asia Pac J Oncol Nurs. 2021;8(6):596-603. doi: 10.4103/apjon.apjon-2129. 2. Papież MA, Krzyściak W. Biological Therapies in the Treatment of Cancer-Update and New Directions. Int J Mol Sci. 2021;22(21):11694. doi: 10.3390/ijms222111694 3. Pedoeem A, Azoulay-Alfaguter I, Strazza M, Silverman GJ, Mor A. Programmed death-1 pathway in cancer and autoimmunity. Clin Immunol. 2014;153(1):145-52. doi: 10.1016/j.clim.2014.04.010. 4. Shao Q, Gu J, Zhou J, Wang Q, Li X, Deng Z, Lu L. Tissue Tregs and Maintenance of Tissue Homeostasis. Front Cell Dev Biol. 2021;9:717903. doi: 10.3389/fcell.2021.717903. 5. Spurrier MA, Jennings-Gee JE, Daly CA, Haas KM. The PD-1 Regulatory Axis Inhibits T Cell-Independent B Cell Memory Generation and Reactivation. J Immunol. 2021;207(8):1978-1989. doi: 10.4049/jimmunol.2100336. E 6. Zhu X, Lang J. Soluble PD-1 and PD-L1: predictive and prognostic significance in cancer. Oncotarget. 2017;8(57):97671-97682. doi: 10.18632/oncotarget.18311. 7. Patsoukis N, Wang Q, Strauss L, Boussiotis VA. Revisiting the PD-1 pathway. Sci Adv. 2020;6(38):eabd2712. doi: 10.1126/sciadv.abd2712. 8. Cai J, Wang D, Zhang G, Guo X. The role Of PD-1/PD-L1 axis in Treg development and function: Implications for cancer immunotherapy. Onco Targets Ther. 2019;12:8437-8445. doi: 10.2147/OTT.S221340. 9. Hu W, Wang G, Wang Y, Riese MJ, You M. Uncoupling therapeutic efficacy from immune-related adverse events in immune checkpoint blockade. iScience. 2020;23(10):101580. doi: 10.1016/j.isci.2020.101580. 10. Durrechou Q, Domblides C, Sionneau B, Lefort F, Quivy A, Ravaud A, Gross-Goupil M, Daste A. Management of immune checkpoint inhibitor toxicities. Cancer Manag Res. 2020;12:9139-9158. doi: 10.2147/CMAR.S218756. 11. Huang Z, Su W, Lu T, Wang Y, Dong Y, Qin Y, Liu D, Sun L, Jiao W. First-line immune-checkpoint inhibitors in non-small cell lung cancer: Current landscape and future progress. Front Pharmacol. 2020;11:578091. doi: 10.3389/fphar.2020.578091. 12. Sławiński G, Wrona A, Dąbrowska-Kugacka A, Raczak G, Lewicka E. Immune checkpoint inhibitors and cardiac toxicity in patients treated for non-small lung cancer: A review. Int J Mol Sci. 2020;21(19):7195. doi: 10.3390/ijms21197195. 13. Muto Y, Kitano S, Tsutsumida A, Namikawa K, Takahashi A, Nakamura Y, Yamanaka T, Yamamoto N, Yamazaki N. Investigation of clinical factors associated with longer overall survival in advanced melanoma patients treated with sequential ipilimumab. J Dermatol. 2019;46(6):498-506. doi: 10.1111/1346-8138.14865. 14. Dalle S, Mortier L, Corrie P, Lotem M, Board R, Arance AM, Meiss F, Terheyden P, Gutzmer R, Buysse B, Oh K, Brokaw J, Le TK, Mathias SD, Scotto J, Lord-Bessen J, Moshyk A, Kotapati S, Middleton MR. Long-term real-world experience with ipilimumab and non-ipilimumab therapies in advanced melanoma: the IMAGE study. BMC Cancer. 2021;21(1):642. doi: 10.1186/s12885-021-08032-y. 15. Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C, Kalinka-Warzocha E, Savage KJ, Hernberg MM, Lebbé C, Charles J, Mihalcioiu C, Chiarion-Sileni V, Mauch C, Cognetti F, Arance A, Schmidt H, Schadendorf D, Gogas H, Lundgren-Eriksson L, Horak C, Sharkey B, Waxman IM, Atkinson V, Ascierto PA. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320-30. 16. Govindan R, Szczesna A, Ahn MJ, Schneider CP, Gonzalez Mella PF, Barlesi F, Han B, Ganea DE, Von Pawel J, Vladimirov V, Fadeeva N, Lee KH, Kurata T, Zhang L, Tamura T, Postmus PE, Jassem J, O'Byrne K, Kopit J, Li M, Tschaika M, Reck M. Phase III trial of ipilimumab combined with paclitaxel and carboplatin in advanced squamous non-small-cell lung cancer. J Clin Oncol. 2017;35(30):3449-3457. doi: 10.1200/JCO.2016.71.7629. 17. Ferrari SM, Fallahi P, Elia G, Ragusa F, Ruffilli I, Patrizio A, Galdiero MR, Baldini E, Ulisse S, Marone G, Antonelli A. Autoimmune Endocrine Dysfunctions Associated with Cancer Immunotherapies. Int J Mol Sci. 2019;20(10):2560. doi: 10.3390/ijms20102560. 18. Shen P, Han L, Ba X, Qin K, Tu S. Hyperprogressive Disease in Cancers Treated With Immune Checkpoint Inhibitors. Front Pharmacol. 2021;12:678409. doi: 10.3389/fphar.2021.678409. 19. Medina PJ, Adams VR. PD-1 pathway inhibitors: Immuno-oncology agents for restoring antitumor immune responses. Pharmacotherapy. 2016;36(3):317-34. doi: 10.1002/phar.1714. 20. Mandalà M, Rutkowski P. Rational combination of cancer immunotherapy in melanoma. Virchows Arch. 2019;474(4):433-447. doi: 10.1007/s00428-018-2506-y. 21. Horinouchi H, Nishio M, Hida T, Nakagawa K, Sakai H, Nogami N, Atagi S, Takahashi T, Saka H, Takenoyama M, Katakami N, Tanaka H, Takeda K, Satouchi M, Isobe H, Maemondo M, Goto K, Hirashima T, Minato K, Sumiyoshi N, Tamura T. Three-year follow-up results from phase II studies of nivolumab in Japanese patients with previously treated advanced non-small cell lung cancer: Pooled analysis of ONO-4538-05 and ONO-4538-06 studies. Cancer Med. 2019;8(11):5183-5193. doi: 10.1002/cam4.2411. 22. Maritaz C, Broutin S, Chaput N, Marabelle A, Paci A. Immune checkpoint-targeted antibodies: a room for dose and schedule optimization? J Hematol Oncol. 2022;15(1):6. doi: 10.1186/s13045-021-01182-3. 23. Liu P, Chen R, Zhang X, Fu R, Tao L, Jia W. Combined PD-1/PD-L1 and tumor-infiltrating immune cells redefined a unique molecular subtype of high-grade serous ovarian carcinoma. BMC Genomics. 2022;23(1):51. doi: 10.1186/s12864-021-08265-y. 24. Aboul-Fettouh N, Morse D, Patel J, Migden MR. Immunotherapy and Systemic Treatment of Cutaneous Squamous Cell Carcinoma. Dermatol Pract Concept. 2021;11(Suppl 2):e2021169S. doi: 10.5826/dpc.11S2a169S. 25. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN, Kohrt HE, Horn L, Lawrence DP, Rost S, Leabman M, Xiao Y, Mokatrin A, Koeppen H, Hegde PS, Mellman I, Chen DS, Hodi FS. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563-7. doi: 10.1038/nature14011. 26. Chiang AC, Sequist LVD, Gilbert J, Conkling P, Thompson D, Marcoux JP, Gettinger S, Kowanetz M, Molinero L, O'Hear C, Fassò M, Lam S, Gordon MS. Clinical activity and safety of atezolizumab in a Phase 1 study of patients with relapsed/refractory small-cell lung cancer. Clin Lung Cancer. 2020;21(5):455-463.e4. doi: 10.1016/j.cllc.2020.05.008. 27. Calabrò L, Morra A, Giannarelli D, Amato G, D'Incecco A, Covre A, Lewis A, Rebelatto MC, Danielli R, Altomonte M, Di Giacomo AM, Maio M. Tremelimumab combined with durvalumab in patients with mesothelioma (NIBIT-MESO-1): an open-label, non-randomised, phase 2 study. Lancet Respir Med. 2018;6(6):451-460. doi: 10.1016/S2213-2600(18)30151-6. 28. Hatic H, Sampat D, Goyal G. Immune checkpoint inhibitors in lymphoma: challenges and opportunities. Ann Transl Med. 2021;9(12):1037. doi: 10.21037/atm-20-6833. 29. Ansell SM, Minnema MC, Johnson P, Timmerman JM, Armand P, Shipp MA, Rodig SJ, Ligon AH, Roemer MGM, Reddy N, Cohen JB, Assouline S, Poon M, Sharma M, Kato K, Samakoglu S, Sumbul A, Grigg A. Nivolumab for relapsed/refractory diffuse large B-cell lymphoma in patients ineligible for or having failed autologous transplantation: A single-arm, phase ii study. J Clin Oncol. 2019;37(6):481-489. doi: 10.1200/JCO.18.00766. 30. Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, Lao CD, Wagstaff J, Schadendorf D, Ferrucci PF, Smylie M, Dummer R, Hill A, Hogg D, Haanen J, Carlino MS, Bechter O, Maio M, Marquez-Rodas I, Guidoboni M, McArthur G, Lebbé C, Ascierto PA, Long GV, Cebon J, Sosman J, Postow MA, Callahan MK, Walker D, Rollin L, Bhore R, Hodi FS, Larkin J. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017;377(14):1345-1356. doi: 10.1056/NEJMoa1709684. 31. Brunner-Weinzierl MC, Rudd CE. CTLA-4 and PD-1 control of T-Cell motility and migration: Implications for tumor immunotherapy. Front Immunol. 2018;9:2737. doi: 10.3389/fimmu.2018.02737. 32. Kim HK, Heo MH, Lee HS, Sun JM, Lee SH, Ahn JS, Park K, Ahn MJ. Comparison of RECIST to immune-related response criteria in patients with non-small cell lung cancer treated with immune-checkpoint inhibitors. Cancer Chemother Pharmacol. 2017;80(3):591-598. doi: 10.1007/s00280-017-3396-4. 33. Cui W, Popat S. Immune Checkpoint Inhibition for Unresectable Malignant Pleural Mesothelioma. Drugs. 2021;81(9):971-984. doi: 10.1007/s40265-021-01506-0.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2023-03-09
date_accessioned 2023-03-09T17:41:07Z
date_available 2023-03-09T17:41:07Z
url https://revistas.fucsalud.edu.co/index.php/repertorio/article/view/1361
url_doi https://doi.org/10.31260/RepertMedCir.01217372.1361
issn 0121-7372
eissn 2462-991X
doi 10.31260/RepertMedCir.01217372.1361
citationstartpage 23
citationendpage 28
url4_str_mv https://revistas.fucsalud.edu.co/index.php/repertorio/article/download/1361/2353
url5_str_mv https://revistas.fucsalud.edu.co/index.php/repertorio/article/download/1361/2322
url3_str_mv https://revistas.fucsalud.edu.co/index.php/repertorio/article/download/1361/2306
url2_str_mv https://revistas.fucsalud.edu.co/index.php/repertorio/article/download/1361/2293
url7_str_mv https://revistas.fucsalud.edu.co/index.php/repertorio/article/download/1361/2337
_version_ 1797159964760866816
spelling Anticuerpos inmunomoduladores en el tratamiento del cáncer
Zhang L, Lu Y. Follow-up Care for Patients Receiving Immune Checkpoint Inhibitors. Asia Pac J Oncol Nurs. 2021;8(6):596-603. doi: 10.4103/apjon.apjon-2129. 2. Papież MA, Krzyściak W. Biological Therapies in the Treatment of Cancer-Update and New Directions. Int J Mol Sci. 2021;22(21):11694. doi: 10.3390/ijms222111694 3. Pedoeem A, Azoulay-Alfaguter I, Strazza M, Silverman GJ, Mor A. Programmed death-1 pathway in cancer and autoimmunity. Clin Immunol. 2014;153(1):145-52. doi: 10.1016/j.clim.2014.04.010. 4. Shao Q, Gu J, Zhou J, Wang Q, Li X, Deng Z, Lu L. Tissue Tregs and Maintenance of Tissue Homeostasis. Front Cell Dev Biol. 2021;9:717903. doi: 10.3389/fcell.2021.717903. 5. Spurrier MA, Jennings-Gee JE, Daly CA, Haas KM. The PD-1 Regulatory Axis Inhibits T Cell-Independent B Cell Memory Generation and Reactivation. J Immunol. 2021;207(8):1978-1989. doi: 10.4049/jimmunol.2100336. E 6. Zhu X, Lang J. Soluble PD-1 and PD-L1: predictive and prognostic significance in cancer. Oncotarget. 2017;8(57):97671-97682. doi: 10.18632/oncotarget.18311. 7. Patsoukis N, Wang Q, Strauss L, Boussiotis VA. Revisiting the PD-1 pathway. Sci Adv. 2020;6(38):eabd2712. doi: 10.1126/sciadv.abd2712. 8. Cai J, Wang D, Zhang G, Guo X. The role Of PD-1/PD-L1 axis in Treg development and function: Implications for cancer immunotherapy. Onco Targets Ther. 2019;12:8437-8445. doi: 10.2147/OTT.S221340. 9. Hu W, Wang G, Wang Y, Riese MJ, You M. Uncoupling therapeutic efficacy from immune-related adverse events in immune checkpoint blockade. iScience. 2020;23(10):101580. doi: 10.1016/j.isci.2020.101580. 10. Durrechou Q, Domblides C, Sionneau B, Lefort F, Quivy A, Ravaud A, Gross-Goupil M, Daste A. Management of immune checkpoint inhibitor toxicities. Cancer Manag Res. 2020;12:9139-9158. doi: 10.2147/CMAR.S218756. 11. Huang Z, Su W, Lu T, Wang Y, Dong Y, Qin Y, Liu D, Sun L, Jiao W. First-line immune-checkpoint inhibitors in non-small cell lung cancer: Current landscape and future progress. Front Pharmacol. 2020;11:578091. doi: 10.3389/fphar.2020.578091. 12. Sławiński G, Wrona A, Dąbrowska-Kugacka A, Raczak G, Lewicka E. Immune checkpoint inhibitors and cardiac toxicity in patients treated for non-small lung cancer: A review. Int J Mol Sci. 2020;21(19):7195. doi: 10.3390/ijms21197195. 13. Muto Y, Kitano S, Tsutsumida A, Namikawa K, Takahashi A, Nakamura Y, Yamanaka T, Yamamoto N, Yamazaki N. Investigation of clinical factors associated with longer overall survival in advanced melanoma patients treated with sequential ipilimumab. J Dermatol. 2019;46(6):498-506. doi: 10.1111/1346-8138.14865. 14. Dalle S, Mortier L, Corrie P, Lotem M, Board R, Arance AM, Meiss F, Terheyden P, Gutzmer R, Buysse B, Oh K, Brokaw J, Le TK, Mathias SD, Scotto J, Lord-Bessen J, Moshyk A, Kotapati S, Middleton MR. Long-term real-world experience with ipilimumab and non-ipilimumab therapies in advanced melanoma: the IMAGE study. BMC Cancer. 2021;21(1):642. doi: 10.1186/s12885-021-08032-y. 15. Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C, Kalinka-Warzocha E, Savage KJ, Hernberg MM, Lebbé C, Charles J, Mihalcioiu C, Chiarion-Sileni V, Mauch C, Cognetti F, Arance A, Schmidt H, Schadendorf D, Gogas H, Lundgren-Eriksson L, Horak C, Sharkey B, Waxman IM, Atkinson V, Ascierto PA. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320-30. 16. Govindan R, Szczesna A, Ahn MJ, Schneider CP, Gonzalez Mella PF, Barlesi F, Han B, Ganea DE, Von Pawel J, Vladimirov V, Fadeeva N, Lee KH, Kurata T, Zhang L, Tamura T, Postmus PE, Jassem J, O'Byrne K, Kopit J, Li M, Tschaika M, Reck M. Phase III trial of ipilimumab combined with paclitaxel and carboplatin in advanced squamous non-small-cell lung cancer. J Clin Oncol. 2017;35(30):3449-3457. doi: 10.1200/JCO.2016.71.7629. 17. Ferrari SM, Fallahi P, Elia G, Ragusa F, Ruffilli I, Patrizio A, Galdiero MR, Baldini E, Ulisse S, Marone G, Antonelli A. Autoimmune Endocrine Dysfunctions Associated with Cancer Immunotherapies. Int J Mol Sci. 2019;20(10):2560. doi: 10.3390/ijms20102560. 18. Shen P, Han L, Ba X, Qin K, Tu S. Hyperprogressive Disease in Cancers Treated With Immune Checkpoint Inhibitors. Front Pharmacol. 2021;12:678409. doi: 10.3389/fphar.2021.678409. 19. Medina PJ, Adams VR. PD-1 pathway inhibitors: Immuno-oncology agents for restoring antitumor immune responses. Pharmacotherapy. 2016;36(3):317-34. doi: 10.1002/phar.1714. 20. Mandalà M, Rutkowski P. Rational combination of cancer immunotherapy in melanoma. Virchows Arch. 2019;474(4):433-447. doi: 10.1007/s00428-018-2506-y. 21. Horinouchi H, Nishio M, Hida T, Nakagawa K, Sakai H, Nogami N, Atagi S, Takahashi T, Saka H, Takenoyama M, Katakami N, Tanaka H, Takeda K, Satouchi M, Isobe H, Maemondo M, Goto K, Hirashima T, Minato K, Sumiyoshi N, Tamura T. Three-year follow-up results from phase II studies of nivolumab in Japanese patients with previously treated advanced non-small cell lung cancer: Pooled analysis of ONO-4538-05 and ONO-4538-06 studies. Cancer Med. 2019;8(11):5183-5193. doi: 10.1002/cam4.2411. 22. Maritaz C, Broutin S, Chaput N, Marabelle A, Paci A. Immune checkpoint-targeted antibodies: a room for dose and schedule optimization? J Hematol Oncol. 2022;15(1):6. doi: 10.1186/s13045-021-01182-3. 23. Liu P, Chen R, Zhang X, Fu R, Tao L, Jia W. Combined PD-1/PD-L1 and tumor-infiltrating immune cells redefined a unique molecular subtype of high-grade serous ovarian carcinoma. BMC Genomics. 2022;23(1):51. doi: 10.1186/s12864-021-08265-y. 24. Aboul-Fettouh N, Morse D, Patel J, Migden MR. Immunotherapy and Systemic Treatment of Cutaneous Squamous Cell Carcinoma. Dermatol Pract Concept. 2021;11(Suppl 2):e2021169S. doi: 10.5826/dpc.11S2a169S. 25. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN, Kohrt HE, Horn L, Lawrence DP, Rost S, Leabman M, Xiao Y, Mokatrin A, Koeppen H, Hegde PS, Mellman I, Chen DS, Hodi FS. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563-7. doi: 10.1038/nature14011. 26. Chiang AC, Sequist LVD, Gilbert J, Conkling P, Thompson D, Marcoux JP, Gettinger S, Kowanetz M, Molinero L, O'Hear C, Fassò M, Lam S, Gordon MS. Clinical activity and safety of atezolizumab in a Phase 1 study of patients with relapsed/refractory small-cell lung cancer. Clin Lung Cancer. 2020;21(5):455-463.e4. doi: 10.1016/j.cllc.2020.05.008. 27. Calabrò L, Morra A, Giannarelli D, Amato G, D'Incecco A, Covre A, Lewis A, Rebelatto MC, Danielli R, Altomonte M, Di Giacomo AM, Maio M. Tremelimumab combined with durvalumab in patients with mesothelioma (NIBIT-MESO-1): an open-label, non-randomised, phase 2 study. Lancet Respir Med. 2018;6(6):451-460. doi: 10.1016/S2213-2600(18)30151-6. 28. Hatic H, Sampat D, Goyal G. Immune checkpoint inhibitors in lymphoma: challenges and opportunities. Ann Transl Med. 2021;9(12):1037. doi: 10.21037/atm-20-6833. 29. Ansell SM, Minnema MC, Johnson P, Timmerman JM, Armand P, Shipp MA, Rodig SJ, Ligon AH, Roemer MGM, Reddy N, Cohen JB, Assouline S, Poon M, Sharma M, Kato K, Samakoglu S, Sumbul A, Grigg A. Nivolumab for relapsed/refractory diffuse large B-cell lymphoma in patients ineligible for or having failed autologous transplantation: A single-arm, phase ii study. J Clin Oncol. 2019;37(6):481-489. doi: 10.1200/JCO.18.00766. 30. Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, Lao CD, Wagstaff J, Schadendorf D, Ferrucci PF, Smylie M, Dummer R, Hill A, Hogg D, Haanen J, Carlino MS, Bechter O, Maio M, Marquez-Rodas I, Guidoboni M, McArthur G, Lebbé C, Ascierto PA, Long GV, Cebon J, Sosman J, Postow MA, Callahan MK, Walker D, Rollin L, Bhore R, Hodi FS, Larkin J. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017;377(14):1345-1356. doi: 10.1056/NEJMoa1709684. 31. Brunner-Weinzierl MC, Rudd CE. CTLA-4 and PD-1 control of T-Cell motility and migration: Implications for tumor immunotherapy. Front Immunol. 2018;9:2737. doi: 10.3389/fimmu.2018.02737. 32. Kim HK, Heo MH, Lee HS, Sun JM, Lee SH, Ahn JS, Park K, Ahn MJ. Comparison of RECIST to immune-related response criteria in patients with non-small cell lung cancer treated with immune-checkpoint inhibitors. Cancer Chemother Pharmacol. 2017;80(3):591-598. doi: 10.1007/s00280-017-3396-4. 33. Cui W, Popat S. Immune Checkpoint Inhibition for Unresectable Malignant Pleural Mesothelioma. Drugs. 2021;81(9):971-984. doi: 10.1007/s40265-021-01506-0.
text/xml
audio/mpeg
Sociedad de Cirugía de Bogotá, Hospital de San José y Fundación Universitaria de Ciencias de la Salud
https://revistas.fucsalud.edu.co/index.php/repertorio/article/view/1361
Español
https://creativecommons.org/licenses/by-nc-sa/4.0/
Revista Repertorio de Medicina y Cirugía - 2023
info:eu-repo/semantics/article
text/html
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_dcae04bc
http://purl.org/redcol/resource_type/ARTREV
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
application/epub+zip
Revista Repertorio de Medicina y Cirugía
application/pdf
1
Los anticuerpos inmunomoduladores (Aim) tienen la capacidad de modificar el funcionamiento del sistema inmune. Sus efectos sobre los receptores CTLA-4 y PD-1 producen disminución de la activación celular, afectando las acciones de los linfocitos T. La función de ambos receptores es cesar las funciones de las células inmunes autorreactivas que no son destruidas en las estructuras inmunes correspondientes y proteger los tejidos inflamados. Los tumores que expresan estos receptores evitan el reconocimiento por parte de las células inmunes. Los Aim bloquean los receptores y permiten a los linfocitos reconocer y responder ante antígenos neoplásicos. Las investigaciones sobre los fármacos con Aim muestran eficacia moderada en el tratamiento de algunos casos de cáncer en estadios avanzados. El uso combinado de fármacos tiene potenciales efectos sinérgicos con resultados positivos. Aún deben establecerse los posibles indicadores de éxito terapéutico y la posibilidad de reducir los efectos adversos en el uso clínico. El objetivo de esta revisión fue analizar las funciones y utilidad terapéutica de los anticuerpos inmunomoduladores en el tratamiento del cáncer.  
Reyna Villasmil, Eduardo
Anticuerpos inmunomoduladores
Cáncer
Neoplasias malignas
tratamiento
32
Publication
Artículo de revista
Malignant neoplasms
Cancer
Treatment
Immunomodulatory antibodies (MAbs) acquire the ability to alter the function of the immune system. Their effects on CTLA-4 and PD-1 receptors limit cellular activation, affecting T lymphocytes activity. The role of both receptors is to inhibit autoreactive immune cells not destroyed in the corresponding immune structures and to protect inflamed tissues. Tumors expressing these receptors evade immune cells recognition. MAbs block the receptors and enable lymphocytes to recognize and respond to neoplastic antigens. Research on MAbs drugs shows moderate efficacy in the treatment of some cases of advanced cancer. The combination of drugs has potentially synergistic mechanisms with positive results. Possible indicators of therapeutic success and the likelihood of reducing the adverse effects in clinical use, have yet to be established. The aim of this review was to analyze the roles and usefulness of immunomodulatory antibodies for cancer therapy.  
Journal article
Immunomodulatory antibodies for cancer treatment
Immunomodulatory antibodies
2023-03-09T17:41:07Z
2023-03-09T17:41:07Z
0121-7372
2462-991X
https://doi.org/10.31260/RepertMedCir.01217372.1361
10.31260/RepertMedCir.01217372.1361
https://revistas.fucsalud.edu.co/index.php/repertorio/article/download/1361/2353
https://revistas.fucsalud.edu.co/index.php/repertorio/article/download/1361/2322
https://revistas.fucsalud.edu.co/index.php/repertorio/article/download/1361/2306
https://revistas.fucsalud.edu.co/index.php/repertorio/article/download/1361/2293
2023-03-09
28
23
https://revistas.fucsalud.edu.co/index.php/repertorio/article/download/1361/2337