Modelación de los stocks de carbono del suelo y las emisiones de dióxido de carbono (GEI) en sistemas productivos de la Altillanura Plana

Los distintos manejos de los suelos afectan las existencias de C del suelo. El análisis multivariado de la modelación de los stocks de C del suelo (SOC0-T), las tasas de pérdidas (-ΔC) y/o ganancias de C del suelo (ΔC), las emisiones de gases de efecto invernadero (GEI) y remociones (-GEI) de CO2 atmosférico asociadas con algunas propiedades fisicoquímicas de los suelos en sistemas productivos de la Altillanura y otros de Piedemonte de la Orinoquia conformaron tres grupos bien definidos. El clúster I agrupó a pasturas mejoradas de Granada (S1) y sistemas agroforestales (SAFs) de café asociados con plátano y leguminosas de Villavicencio (S9), donde las ganancias de C (ΔC) y absorciones de CO2 atmosférico (-GEI) fueron medias variando de ≈ 0.... Ver más

Guardado en:

0121-3709

2011-2629

22

2018-12-16

158

171

http://purl.org/coar/access_right/c_abf2

info:eu-repo/semantics/openAccess

Orinoquia - 2019

id a15a68ba2f9ba6b43d43082a073454b4
record_format ojs
spelling Modelación de los stocks de carbono del suelo y las emisiones de dióxido de carbono (GEI) en sistemas productivos de la Altillanura Plana
Jadán O, Cifuentes M, Torres B, Selesi D, Veintimilla D, Günter S. Influence of tree cover on diversity, carbon sequestration and productivity of cocoa systems in the Ecuadorian Amazon. Bois et forêts des Tropiques. 2015;325(3):35-47.
La Scala N Jr, Lopes A, Spokas K, Archer D, Reicosky DC. Short-term temporal changes of bare soil CO2 fluxes after tillage described by first-order decay models. Eur J Soil Sci. 2009;60:258-264.
La Scala N Jr, Marques Jr J, Pereira GT, Corá JE. Carbon dioxide emission related to chemical properties of a tropical bare soil. Soil Biol Biochem. 2000;32:1469-1473.
Lal R. Carbon sequestration. Phil. Trans. R Soc B. 2008;363:815-830.
Lal R. Soil carbon sequestration impacts on global climate change and food security. Science. 2004;304:1623-1627.
Lal R. Managing soils and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security. Bioscience. 2010;60:708-721.
Lal R, Follet RF, Kimble J, Cole CV. Managing U.S. cropland to sequester carbon in soil. J Soil Water Conserv. 1999;5:374-381.
Kirby KR, Potvin C. Variation in carbon storage among tree species: implications for the management of a small-scale carbon sink project. For Ecol Manag. 2007;246:208-221.
Kaul M, Dadhwal VK, Mohren GMJ. Land use change and net C flux in Indian forests. Forest Ecol Manag. 2009;258:100-108.
Jaramillo D. 2002. Introducción a la Ciencia del Suelo. Universidad Nacional de Colombia, Facultad de Ciencias, 613 p.
IPCC - Intergovernmental Panel on Climate Change. 2007. Climate change impacts, adaptation and vulnerability. Summary for policy makers. Paris: 2007.
Liu A, Ma BL, Bomke AA. Effects of cover crops on soil aggregate stability, total organic carbon, and polysaccharides. Soil Sci Soc Am J. 2005;69: 2041-2048.
IPCC - Intergovernmental Panel on Climate Change. 2006. Guidelines for national greenhouse gas inventories. En: Eggleston HS, Buendía HS, Miwa L, Ngara K, Tanabe K. (Ed.). Agriculture, Forestry and Other Land Use. (595 p). Hayama: Nacional Greenhouse Gas Inventories Programme. Institute for Global Environmental Strategies (IGES).
IGAC – Instituto Geográfico Agustín Codazzi. 2006. Métodos analíticos de laboratorio de suelos. Bogotá, Colombia, IGAC, 8-411.
Giraldo A, Zapata M, Montoya E. Carbon capture and flow in a silvopastoral system of the Colombian Andean zone. Asociación Latinoamericana de Producción Animal. 2008;16(4):241-245.
Friesen D, Thomas R, Rivera M, Asakawa N, Bowen W. 1998. Nitrogen dynamics under monocultures and crop rotations on a Colombian savanna Oxisol. En: Proceedings of the 16th World Congress of Soil Science on CD-ROM. Association française pour l´étude du sol, Montpellier, Francia.
Dossa E, Fernandes E, Reid W, Ezui K. Above- and below-ground biomass, nutrient and carbon stocks contrasting an open-grown and a shaded coffee plantation. Agrofor Syst. 2008;72:103-115.
Conant RT, Paustian K, Elliott ET. Grassland Management and Conversion into Grassland: Effects on Soil Carbon. Ecol Appl. 2001;11:343-355.
Cochrane TT, Sanchez LG, Azevedo LG, Porras JH, Garver CL. 1985. Land in Tropical America. CIAT, Cali, Colombia and EMBRAPA, Planaltina, D.F., BRAZIL. ISBN 84-89206. 3 vols and maps.
Chen HQ, Hou RX, Gong YS, Li HW, Fan MS, Kuzyakov Y. Effects of 11 years of conservation tillage on soil organic matter fractions in wheat monoculture in Loess Plateau of China. Soil Till Res. 2009;106:85-94.
Cerri CEP, Sparovek G, Bernoux M, Easterling WE, Melillo JM, Cerri CC. Tropical agriculture and global warming: impacts and mitigations options. Sci Agric. 2007;64:83-99.
Latriglia CLX, Vera OC. Captura de Carbono en sistemas pastoriles establecidos en Colombia. Rev Sist Prod Agroecol. 2014;6(1):89-113.
Lopes AS, Ayarza M, Thomas RJ. 2004. Managing and conserving acid savanna soils for agricultural development: Lessons from the Brazilian Cerrados. En: Guimarães EP, Sanz JI, Rao IM, Amézquita MC, Amézquita E, Thomas RJ (eds). Agropastoral systems for the tropical savannas of Latin America. Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia; Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Brasilia, DF, Brasil. p 11–41.
Campos BC, Amado TJC, Bayer C, Nicoloso R, Fiorin JE. Carbon stock and its compartments in a subtropical Oxisol under long-term tillage and crop rotation systems. R Bras Ci Solo. 2011;35:805-817.
Somarriba E, Cerda R, Orozco L, Cifuentes M, Davila H, Espin T. et al. Carbon stocks and cocoa yields in agroforestry systems of Central America. Agric Ecosyst Environ. 2013;173:46-57.
Text
http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:eu-repo/semantics/article
White PJ. Effects of crop residues incorporation on soil properties and growth of subsequent crops. Aust J Exp Agric Anim Husb. 1984;24:219-235.
Yoon S, Wattenbach M, Smith J. Greenhouse gas mitigation in agriculture. Phil Trans. R Soc B. 2008;363:789-813.
Six J, Frey SD, Thies RK, Batten KM. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J. 2006;70:555-569.
Lovato T, Mielniczuk J, Bayer C, Vezzani C. Adição de carbono e nitrogênio e sua relação com os estoques no solo e com o rendimento do milho em sistemas de manejo. R Bras Ci Solo. 2004;28:175-187.
Saha SK, Nair PKR, Nair VD, Kumar BM. Carbon storage in relation to soil size-fractions under some tropical tree-based land-use systems. Plant Soil. 2010;328:433-446.
Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J. Greenhouse gas mitigation in agriculture. Phil Trans R Soc B. 2008;363:789-813.
Reicosky DC, Archer DW. Moldboard plow tillage depth and short-term carbon dioxide release. Soil Till Res. 2007;94:109-121.
Reeves DW. The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Till Res. 1997;43:131-167.
Ogle SM, Breidt FJ, Paustian K. Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry. 2005;72:87-121.
Novelli LE, Caviglia OP, Melchiori RJM. Impact of soybean cropping frequency on soil carbon storage in Mollisols and Vertisols. Geoderma. 2011;167-168: 254–260.
Nair PKR, Nair VD, Kumar BM, Showalter JM. Carbon sequestration in agroforestry systems. Adv Agron. 2010;108:237-307.
Manly BFJ. 1997. Multivariate statistical methods. A primer. Second Ed. Chapman & Hall, London. 216 p.
Malagón D. Ensayo sobre tipología de suelos colombianos - énfasis en génesis y aspectos ambientales. Revista Acad Colomb Ci Exact. 2003;27(104):319-341.
Castillo J, Amézquita E, Muller-Samann K. La turbidimetría una metodología promisoria para caracterizar la estabilidad estructural de los suelos. Suelos Ecuatoriales. 2000;30(2):152-156.
Brady NC, Weil RR. 2002. The nature and properties of soils. 13th ed. New Jersey, United States of America, Prentice Hall, 498–542 p.
Bordin I, Neves CSVJ, Medina CC, Santos JCF, Torres E, Urquiaga S. Matéria seca, carbono e nitrogênio de raízes de soja e milho em plantio direto e convencional. Pesq Agropec Bras. 2008;12:1785-1792.
https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/525
Los distintos manejos de los suelos afectan las existencias de C del suelo. El análisis multivariado de la modelación de los stocks de C del suelo (SOC0-T), las tasas de pérdidas (-ΔC) y/o ganancias de C del suelo (ΔC), las emisiones de gases de efecto invernadero (GEI) y remociones (-GEI) de CO2 atmosférico asociadas con algunas propiedades fisicoquímicas de los suelos en sistemas productivos de la Altillanura y otros de Piedemonte de la Orinoquia conformaron tres grupos bien definidos. El clúster I agrupó a pasturas mejoradas de Granada (S1) y sistemas agroforestales (SAFs) de café asociados con plátano y leguminosas de Villavicencio (S9), donde las ganancias de C (ΔC) y absorciones de CO2 atmosférico (-GEI) fueron medias variando de ≈ 0.11 a 2.37 t C ha-1 año-1 y de -1.60 a -8.70 t CO2eq ha-1 año-1; siendo que monocultivos en rotación también formaron parte de este grupo; el clúster II reunió a monocultivos de arroz de Villavicencio (S10) y de piña de Puerto López (S14) que presentaron las más altas pérdidas de C (-ΔC) del suelo y emisiones de CO2 atmosférico (GEI) de ≈ -2.08 a -2.35 t C ha-1 año-1 y de ≈ 7.62 a 8.62 t CO2eq ha-1 año-1; el clúster III agrupo a sistemas agroforestales SAFs de caucho y leguminosas de cobertura (S13) y sistemas silvopastoriles (SSPs) de Acacia mangium y pasturas mejoradas (S12) de Puerto López con las más altas ganancias de C del suelo (ΔC) y absorciones de CO2 atmosférico (-GEI) de ≈ 0.373 a 2.64 t C ha-1 año-1 y de ≈ -1.36 a -9.67 t CO2eq ha-1 año-1. Los sistemas agroforestales son una buena alternativa para el secuestro de C del suelo en la Altillanura Plana de Colombia.
Silva-Parra, Amanda
Agricultura sostenible
cambio climático
entrada de residuos
tipo de labranza
usos del suelo
22
2
Artículo de revista
application/pdf
Universidad de los Llanos
Orinoquia
Publication
Andrade HJ, Figueroa JMP, Silva DP. Carbon storage in cacao (Theobroma cacao) plantations in Armero - Guayabal (Tolima, Colombia). Scientia Agroalimentaria. 2013;1:6-10.
Amézquita E. 2013. Propiedades Físicas de los Suelos de los Llanos Orientales y sus Requerimientos de Labranza. En: Sistemas agropastoriles: Un enfoque integrado para el manejo sostenible de Oxisoles de los Llanos Orientales de Colombia /editado por Edgar Amézquita, Idupulapati M. Rao, Mariela Rivera, Irlanda I. Corrales y Jaime H. Bernal. -- Cali, CO: Centro Internacional de Agricultura Tropical (CIAT); Ministerio de Agricultura y Desarrollo Rural (MADR) de Colombia; Corporación Colombiana de Investigación Agropecuaria (Corpoica), 2013. 288 p. -- (Documento de Trabajo CIAT No. 223). ISBN 978-958-694-117-4
Boeckx P, Vervaet H, Van Cleemput, O. NO and N2O fluxes from a Belgian forest affected by elevated nitrogen deposition. Guyana Bot. 2005;62:72-87.
Español
https://creativecommons.org/licenses/by-nc-sa/4.0/
Orinoquia - 2019
Bernoux M, Cerri CC, Cerri CEP, Siqueira Neto M, Metay A, Perrin AS, Scopel E, Razafimbelo T, Blavet D, Piccolo MC, Pavei M and Milne E. Cropping systems, carbon sequestration and erosion in Brazil. Agron Sustain Dev. 2006; 26:1-8.
Ávila G, Jiménez F, Beer J, Gómez M, Ibrahim, M. Almacenamiento, fijación de carbono y valoración de servicios ambientales en sistemas agroforestales en Costa Rica. Agrofor Am. 2001;8(30):32-35. Basamba TA, Barrios E, Amézquita E, Rao IM, Singh BR. Tillage effects on maize yield in a Colombian savanna Oxisol: Soil organic matter and P fractions. Soil Tillage Res. 2006;91(1-2):131-142. Bayer C, Martin-Neto L, Mielniczuk J, Pavinato A, Dieckow J. Carbon sequestration in two Brazilian Cerrado soils under no-till. Soil Tillage Res. 2006;86:237-245. Benavides J. 2010. El desarrollo económico de la Orinoquia, como aprendizaje y construcción de instituciones. Debates Presidenciales. CAF-Fedesarrollo. 40 p.
Amado TJC, Bayer C, Conceicao PC, Spagnollo E, Campos BC, Veiga M. Potential of carbon accumulation in no-till soils with intensive use and cover crops in Southern Brazil. J Environ Qual. 2006;35:1599-1607.
Amézquita E, Sanz JI, Thomas RJ, Vera RR, Hoyos P, Molina DL, Chávez LF. Características estructurales de los suelos de los Llanos Orientales de Colombia sometidos a varios sistemas de manejo. Revista Suelos Ecuatoriales. 1997;27:151-156.
Amézquita E, Friesen D, Rivera M, Rao IM, Barrios E, Jiménez JJ, Decaens T, Thomas RJ. 2002. Sustainability of crop rotation and ley pasture systems on the acid-soil savannas of South America. In: Proceedings of the 17th World Congress of Soil Science, Bangkok, Tailandia, 14–21 Agosto 2002.
entradas de resíduos
mudanças climáticas
tipo do preparo do solo
uso do solo
sustainable agriculture
residues inputs
tillage type
land use
Journal article
Modeling soil carbon stocks and carbon dioxide emissions (GHG) in production systems of Plain Altillanura
Climate change
The different soil management affects soil C stocks. Multivariate analysis of the modeling of soil C stocks (SOC0-T), soil C losses rates (-ΔC) and / or soil C gains (ΔC), greenhouse emissions (GHG) and removals (-GHG) atmospheric of CO2 associated with some physicochemical properties of soils in productive systems of High plains and other of lower mountains of the Orinoco region formed three distinct groups. Cluster I grouped improved pastures of Granada (S1) and coffee agroforestry systems (AFS) associated with banana and legumes of Villavicencio (S9), where gains of C (ΔC) and removal of atmospheric CO2 (-GEI) were averages ranging from ≈ 0.11 to -2.37 t C ha-1 yr-1 and -1.60 to -8.70 t CO2eq ha-1 yr-1; monocultures in rotation also were part of this group; Cluster II grouped rice monoculture of Villavicencio (S10) and pineapple of Puerto Lopez (S14) who had the highest losses of C (-ΔC) and soil atmospheric CO2 emissions (GHG) of ≈ -2.08 to - 2.35 t C ha-1 yr-1 of ≈ 7.62 to 8.62 t CO2eq ha-1 yr-1; Cluster III grouped to agroforestry system AFS of rubber and leguminous cover crops (S13) and silvopastoral systems (SSPs) of Acacia mangium and improved pastures of Puerto Lopez (S12) with the highest gains of soil C (ΔC) and removals of atmospheric CO2 (-GEI) of ≈ 0.373 to 2.64 t C ha-1 yr-1 and -1.36 to -9.67 ≈ t CO2eq ha-1 yr-1. Agroforestry systems are a good alternative for soil C sequestration in Altillanura Plana of Colombia.
Agricultura sustentável
10.22579/20112629.525
https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/download/525/1089
https://doi.org/10.22579/20112629.525
171
158
2018-12-16T00:00:00Z
2018-12-16
0121-3709
2011-2629
2018-12-16T00:00:00Z
institution UNIVERSIDAD DE LOS LLANOS
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDELOSLLANOS/logo.png
country_str Colombia
collection Orinoquia
title Modelación de los stocks de carbono del suelo y las emisiones de dióxido de carbono (GEI) en sistemas productivos de la Altillanura Plana
spellingShingle Modelación de los stocks de carbono del suelo y las emisiones de dióxido de carbono (GEI) en sistemas productivos de la Altillanura Plana
Silva-Parra, Amanda
Agricultura sostenible
cambio climático
entrada de residuos
tipo de labranza
usos del suelo
entradas de resíduos
mudanças climáticas
tipo do preparo do solo
uso do solo
sustainable agriculture
residues inputs
tillage type
land use
Climate change
Agricultura sustentável
title_short Modelación de los stocks de carbono del suelo y las emisiones de dióxido de carbono (GEI) en sistemas productivos de la Altillanura Plana
title_full Modelación de los stocks de carbono del suelo y las emisiones de dióxido de carbono (GEI) en sistemas productivos de la Altillanura Plana
title_fullStr Modelación de los stocks de carbono del suelo y las emisiones de dióxido de carbono (GEI) en sistemas productivos de la Altillanura Plana
title_full_unstemmed Modelación de los stocks de carbono del suelo y las emisiones de dióxido de carbono (GEI) en sistemas productivos de la Altillanura Plana
title_sort modelación de los stocks de carbono del suelo y las emisiones de dióxido de carbono (gei) en sistemas productivos de la altillanura plana
title_eng Modeling soil carbon stocks and carbon dioxide emissions (GHG) in production systems of Plain Altillanura
description Los distintos manejos de los suelos afectan las existencias de C del suelo. El análisis multivariado de la modelación de los stocks de C del suelo (SOC0-T), las tasas de pérdidas (-ΔC) y/o ganancias de C del suelo (ΔC), las emisiones de gases de efecto invernadero (GEI) y remociones (-GEI) de CO2 atmosférico asociadas con algunas propiedades fisicoquímicas de los suelos en sistemas productivos de la Altillanura y otros de Piedemonte de la Orinoquia conformaron tres grupos bien definidos. El clúster I agrupó a pasturas mejoradas de Granada (S1) y sistemas agroforestales (SAFs) de café asociados con plátano y leguminosas de Villavicencio (S9), donde las ganancias de C (ΔC) y absorciones de CO2 atmosférico (-GEI) fueron medias variando de ≈ 0.11 a 2.37 t C ha-1 año-1 y de -1.60 a -8.70 t CO2eq ha-1 año-1; siendo que monocultivos en rotación también formaron parte de este grupo; el clúster II reunió a monocultivos de arroz de Villavicencio (S10) y de piña de Puerto López (S14) que presentaron las más altas pérdidas de C (-ΔC) del suelo y emisiones de CO2 atmosférico (GEI) de ≈ -2.08 a -2.35 t C ha-1 año-1 y de ≈ 7.62 a 8.62 t CO2eq ha-1 año-1; el clúster III agrupo a sistemas agroforestales SAFs de caucho y leguminosas de cobertura (S13) y sistemas silvopastoriles (SSPs) de Acacia mangium y pasturas mejoradas (S12) de Puerto López con las más altas ganancias de C del suelo (ΔC) y absorciones de CO2 atmosférico (-GEI) de ≈ 0.373 a 2.64 t C ha-1 año-1 y de ≈ -1.36 a -9.67 t CO2eq ha-1 año-1. Los sistemas agroforestales son una buena alternativa para el secuestro de C del suelo en la Altillanura Plana de Colombia.
description_eng The different soil management affects soil C stocks. Multivariate analysis of the modeling of soil C stocks (SOC0-T), soil C losses rates (-ΔC) and / or soil C gains (ΔC), greenhouse emissions (GHG) and removals (-GHG) atmospheric of CO2 associated with some physicochemical properties of soils in productive systems of High plains and other of lower mountains of the Orinoco region formed three distinct groups. Cluster I grouped improved pastures of Granada (S1) and coffee agroforestry systems (AFS) associated with banana and legumes of Villavicencio (S9), where gains of C (ΔC) and removal of atmospheric CO2 (-GEI) were averages ranging from ≈ 0.11 to -2.37 t C ha-1 yr-1 and -1.60 to -8.70 t CO2eq ha-1 yr-1; monocultures in rotation also were part of this group; Cluster II grouped rice monoculture of Villavicencio (S10) and pineapple of Puerto Lopez (S14) who had the highest losses of C (-ΔC) and soil atmospheric CO2 emissions (GHG) of ≈ -2.08 to - 2.35 t C ha-1 yr-1 of ≈ 7.62 to 8.62 t CO2eq ha-1 yr-1; Cluster III grouped to agroforestry system AFS of rubber and leguminous cover crops (S13) and silvopastoral systems (SSPs) of Acacia mangium and improved pastures of Puerto Lopez (S12) with the highest gains of soil C (ΔC) and removals of atmospheric CO2 (-GEI) of ≈ 0.373 to 2.64 t C ha-1 yr-1 and -1.36 to -9.67 ≈ t CO2eq ha-1 yr-1. Agroforestry systems are a good alternative for soil C sequestration in Altillanura Plana of Colombia.
author Silva-Parra, Amanda
author_facet Silva-Parra, Amanda
topicspa_str_mv Agricultura sostenible
cambio climático
entrada de residuos
tipo de labranza
usos del suelo
topic Agricultura sostenible
cambio climático
entrada de residuos
tipo de labranza
usos del suelo
entradas de resíduos
mudanças climáticas
tipo do preparo do solo
uso do solo
sustainable agriculture
residues inputs
tillage type
land use
Climate change
Agricultura sustentável
topic_facet Agricultura sostenible
cambio climático
entrada de residuos
tipo de labranza
usos del suelo
entradas de resíduos
mudanças climáticas
tipo do preparo do solo
uso do solo
sustainable agriculture
residues inputs
tillage type
land use
Climate change
Agricultura sustentável
citationvolume 22
citationissue 2
publisher Universidad de los Llanos
ispartofjournal Orinoquia
source https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/525
language Español
format Article
rights http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/4.0/
Orinoquia - 2019
references Jadán O, Cifuentes M, Torres B, Selesi D, Veintimilla D, Günter S. Influence of tree cover on diversity, carbon sequestration and productivity of cocoa systems in the Ecuadorian Amazon. Bois et forêts des Tropiques. 2015;325(3):35-47.
La Scala N Jr, Lopes A, Spokas K, Archer D, Reicosky DC. Short-term temporal changes of bare soil CO2 fluxes after tillage described by first-order decay models. Eur J Soil Sci. 2009;60:258-264.
La Scala N Jr, Marques Jr J, Pereira GT, Corá JE. Carbon dioxide emission related to chemical properties of a tropical bare soil. Soil Biol Biochem. 2000;32:1469-1473.
Lal R. Carbon sequestration. Phil. Trans. R Soc B. 2008;363:815-830.
Lal R. Soil carbon sequestration impacts on global climate change and food security. Science. 2004;304:1623-1627.
Lal R. Managing soils and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security. Bioscience. 2010;60:708-721.
Lal R, Follet RF, Kimble J, Cole CV. Managing U.S. cropland to sequester carbon in soil. J Soil Water Conserv. 1999;5:374-381.
Kirby KR, Potvin C. Variation in carbon storage among tree species: implications for the management of a small-scale carbon sink project. For Ecol Manag. 2007;246:208-221.
Kaul M, Dadhwal VK, Mohren GMJ. Land use change and net C flux in Indian forests. Forest Ecol Manag. 2009;258:100-108.
Jaramillo D. 2002. Introducción a la Ciencia del Suelo. Universidad Nacional de Colombia, Facultad de Ciencias, 613 p.
IPCC - Intergovernmental Panel on Climate Change. 2007. Climate change impacts, adaptation and vulnerability. Summary for policy makers. Paris: 2007.
Liu A, Ma BL, Bomke AA. Effects of cover crops on soil aggregate stability, total organic carbon, and polysaccharides. Soil Sci Soc Am J. 2005;69: 2041-2048.
IPCC - Intergovernmental Panel on Climate Change. 2006. Guidelines for national greenhouse gas inventories. En: Eggleston HS, Buendía HS, Miwa L, Ngara K, Tanabe K. (Ed.). Agriculture, Forestry and Other Land Use. (595 p). Hayama: Nacional Greenhouse Gas Inventories Programme. Institute for Global Environmental Strategies (IGES).
IGAC – Instituto Geográfico Agustín Codazzi. 2006. Métodos analíticos de laboratorio de suelos. Bogotá, Colombia, IGAC, 8-411.
Giraldo A, Zapata M, Montoya E. Carbon capture and flow in a silvopastoral system of the Colombian Andean zone. Asociación Latinoamericana de Producción Animal. 2008;16(4):241-245.
Friesen D, Thomas R, Rivera M, Asakawa N, Bowen W. 1998. Nitrogen dynamics under monocultures and crop rotations on a Colombian savanna Oxisol. En: Proceedings of the 16th World Congress of Soil Science on CD-ROM. Association française pour l´étude du sol, Montpellier, Francia.
Dossa E, Fernandes E, Reid W, Ezui K. Above- and below-ground biomass, nutrient and carbon stocks contrasting an open-grown and a shaded coffee plantation. Agrofor Syst. 2008;72:103-115.
Conant RT, Paustian K, Elliott ET. Grassland Management and Conversion into Grassland: Effects on Soil Carbon. Ecol Appl. 2001;11:343-355.
Cochrane TT, Sanchez LG, Azevedo LG, Porras JH, Garver CL. 1985. Land in Tropical America. CIAT, Cali, Colombia and EMBRAPA, Planaltina, D.F., BRAZIL. ISBN 84-89206. 3 vols and maps.
Chen HQ, Hou RX, Gong YS, Li HW, Fan MS, Kuzyakov Y. Effects of 11 years of conservation tillage on soil organic matter fractions in wheat monoculture in Loess Plateau of China. Soil Till Res. 2009;106:85-94.
Cerri CEP, Sparovek G, Bernoux M, Easterling WE, Melillo JM, Cerri CC. Tropical agriculture and global warming: impacts and mitigations options. Sci Agric. 2007;64:83-99.
Latriglia CLX, Vera OC. Captura de Carbono en sistemas pastoriles establecidos en Colombia. Rev Sist Prod Agroecol. 2014;6(1):89-113.
Lopes AS, Ayarza M, Thomas RJ. 2004. Managing and conserving acid savanna soils for agricultural development: Lessons from the Brazilian Cerrados. En: Guimarães EP, Sanz JI, Rao IM, Amézquita MC, Amézquita E, Thomas RJ (eds). Agropastoral systems for the tropical savannas of Latin America. Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia; Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Brasilia, DF, Brasil. p 11–41.
Campos BC, Amado TJC, Bayer C, Nicoloso R, Fiorin JE. Carbon stock and its compartments in a subtropical Oxisol under long-term tillage and crop rotation systems. R Bras Ci Solo. 2011;35:805-817.
Somarriba E, Cerda R, Orozco L, Cifuentes M, Davila H, Espin T. et al. Carbon stocks and cocoa yields in agroforestry systems of Central America. Agric Ecosyst Environ. 2013;173:46-57.
White PJ. Effects of crop residues incorporation on soil properties and growth of subsequent crops. Aust J Exp Agric Anim Husb. 1984;24:219-235.
Yoon S, Wattenbach M, Smith J. Greenhouse gas mitigation in agriculture. Phil Trans. R Soc B. 2008;363:789-813.
Six J, Frey SD, Thies RK, Batten KM. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J. 2006;70:555-569.
Lovato T, Mielniczuk J, Bayer C, Vezzani C. Adição de carbono e nitrogênio e sua relação com os estoques no solo e com o rendimento do milho em sistemas de manejo. R Bras Ci Solo. 2004;28:175-187.
Saha SK, Nair PKR, Nair VD, Kumar BM. Carbon storage in relation to soil size-fractions under some tropical tree-based land-use systems. Plant Soil. 2010;328:433-446.
Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J. Greenhouse gas mitigation in agriculture. Phil Trans R Soc B. 2008;363:789-813.
Reicosky DC, Archer DW. Moldboard plow tillage depth and short-term carbon dioxide release. Soil Till Res. 2007;94:109-121.
Reeves DW. The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Till Res. 1997;43:131-167.
Ogle SM, Breidt FJ, Paustian K. Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry. 2005;72:87-121.
Novelli LE, Caviglia OP, Melchiori RJM. Impact of soybean cropping frequency on soil carbon storage in Mollisols and Vertisols. Geoderma. 2011;167-168: 254–260.
Nair PKR, Nair VD, Kumar BM, Showalter JM. Carbon sequestration in agroforestry systems. Adv Agron. 2010;108:237-307.
Manly BFJ. 1997. Multivariate statistical methods. A primer. Second Ed. Chapman & Hall, London. 216 p.
Malagón D. Ensayo sobre tipología de suelos colombianos - énfasis en génesis y aspectos ambientales. Revista Acad Colomb Ci Exact. 2003;27(104):319-341.
Castillo J, Amézquita E, Muller-Samann K. La turbidimetría una metodología promisoria para caracterizar la estabilidad estructural de los suelos. Suelos Ecuatoriales. 2000;30(2):152-156.
Brady NC, Weil RR. 2002. The nature and properties of soils. 13th ed. New Jersey, United States of America, Prentice Hall, 498–542 p.
Bordin I, Neves CSVJ, Medina CC, Santos JCF, Torres E, Urquiaga S. Matéria seca, carbono e nitrogênio de raízes de soja e milho em plantio direto e convencional. Pesq Agropec Bras. 2008;12:1785-1792.
Andrade HJ, Figueroa JMP, Silva DP. Carbon storage in cacao (Theobroma cacao) plantations in Armero - Guayabal (Tolima, Colombia). Scientia Agroalimentaria. 2013;1:6-10.
Amézquita E. 2013. Propiedades Físicas de los Suelos de los Llanos Orientales y sus Requerimientos de Labranza. En: Sistemas agropastoriles: Un enfoque integrado para el manejo sostenible de Oxisoles de los Llanos Orientales de Colombia /editado por Edgar Amézquita, Idupulapati M. Rao, Mariela Rivera, Irlanda I. Corrales y Jaime H. Bernal. -- Cali, CO: Centro Internacional de Agricultura Tropical (CIAT); Ministerio de Agricultura y Desarrollo Rural (MADR) de Colombia; Corporación Colombiana de Investigación Agropecuaria (Corpoica), 2013. 288 p. -- (Documento de Trabajo CIAT No. 223). ISBN 978-958-694-117-4
Boeckx P, Vervaet H, Van Cleemput, O. NO and N2O fluxes from a Belgian forest affected by elevated nitrogen deposition. Guyana Bot. 2005;62:72-87.
Bernoux M, Cerri CC, Cerri CEP, Siqueira Neto M, Metay A, Perrin AS, Scopel E, Razafimbelo T, Blavet D, Piccolo MC, Pavei M and Milne E. Cropping systems, carbon sequestration and erosion in Brazil. Agron Sustain Dev. 2006; 26:1-8.
Ávila G, Jiménez F, Beer J, Gómez M, Ibrahim, M. Almacenamiento, fijación de carbono y valoración de servicios ambientales en sistemas agroforestales en Costa Rica. Agrofor Am. 2001;8(30):32-35. Basamba TA, Barrios E, Amézquita E, Rao IM, Singh BR. Tillage effects on maize yield in a Colombian savanna Oxisol: Soil organic matter and P fractions. Soil Tillage Res. 2006;91(1-2):131-142. Bayer C, Martin-Neto L, Mielniczuk J, Pavinato A, Dieckow J. Carbon sequestration in two Brazilian Cerrado soils under no-till. Soil Tillage Res. 2006;86:237-245. Benavides J. 2010. El desarrollo económico de la Orinoquia, como aprendizaje y construcción de instituciones. Debates Presidenciales. CAF-Fedesarrollo. 40 p.
Amado TJC, Bayer C, Conceicao PC, Spagnollo E, Campos BC, Veiga M. Potential of carbon accumulation in no-till soils with intensive use and cover crops in Southern Brazil. J Environ Qual. 2006;35:1599-1607.
Amézquita E, Sanz JI, Thomas RJ, Vera RR, Hoyos P, Molina DL, Chávez LF. Características estructurales de los suelos de los Llanos Orientales de Colombia sometidos a varios sistemas de manejo. Revista Suelos Ecuatoriales. 1997;27:151-156.
Amézquita E, Friesen D, Rivera M, Rao IM, Barrios E, Jiménez JJ, Decaens T, Thomas RJ. 2002. Sustainability of crop rotation and ley pasture systems on the acid-soil savannas of South America. In: Proceedings of the 17th World Congress of Soil Science, Bangkok, Tailandia, 14–21 Agosto 2002.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2018-12-16
date_accessioned 2018-12-16T00:00:00Z
date_available 2018-12-16T00:00:00Z
url https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/525
url_doi https://doi.org/10.22579/20112629.525
issn 0121-3709
eissn 2011-2629
doi 10.22579/20112629.525
citationstartpage 158
citationendpage 171
url2_str_mv https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/download/525/1089
_version_ 1797159428242276352