Modelos de series temporales para pronóstico de la demanda eléctrica del sector de explotación de minas y canteras en Colombia

Pronosticar la demanda eléctrica es de suma importancia para la planeación estratégica de una nación. La literatura ofrece múltiples acercamientos para el desarrollo de modelos de pronóstico enfocados principalmente en la demanda nacional agregada, dejando de lado los análisis sectoriales, en particular a los sectores no residenciales. En este artículo, utilizando la metodología de análisis de Series de Tiempo, se ajustan, validan y comparan tres diferentes modelos para pronosticar la demanda eléctrica del sector minas y canteras, uno de los más representativos en el consumo eléctrico colombiano. Los modelos ajustados incluyen un modelo de componentes aditivo, un SARIMA y un Holt Wiatednters. Los resultados indican que el modelo que present... Ver más

Guardado en:

1794-1237

2463-0950

18

2020-12-31

35007 pp. 1

23

Revista EIA - 2020

http://purl.org/coar/access_right/c_abf2

info:eu-repo/semantics/openAccess

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

id a11c4656ddc59a0cc97602ed0b8a5c65
record_format ojs
spelling Modelos de series temporales para pronóstico de la demanda eléctrica del sector de explotación de minas y canteras en Colombia
Holt, C. C. (1957) Forecasting seasonals and trends by exponentially weighted moving averages. Pittsburgh, Pa.: Carnegie Institute of Technology, Graduate school of Industrial Administration.
Pérez Osorno, M. and Betancur Vargas, A. (2017) ‘Gestión del sector minero en el ámbito nacional y su relación entre el accionar gubernamental y empresarial’, Recerca. Revista de pensament i anàlisi., 0(20), pp. 157–184. https://doi.org/10.6035/Recerca.2017.20.8.
Percy, S. D., Aldeen, M. and Berry, A. (2018) ‘Residential demand forecasting with solar-battery systems: A survey-less approach’, IEEE Transactions on Sustainable Energy. IEEE, 9(4), pp. 1499–1507. https://doi.org/10.1109/TSTE.2018.2791982.
Mohandes, M. (2002) ‘Support vector machines for short-term electrical load forecasting’, International Journal of Energy Research, 26(4), pp. 335–345. doi: 10.1002/er.787. Nunes Da Silva, I. and Carli Moreira De Andrade, L. (2016) ‘Efficient neurofuzzy model to very short-term load forecasting, IEEE Latin America Transactions, 14(2), pp. 721–728. https://doi.org/10.1109/TLA.2016.7437215.
Kubli, M., Loock, M. and Wüstenhagen, R. (2018) ‘The flexible prosumer: Measuring the willingness to co-create distributed flexibility’, Energy Policy, 114(August 2017), pp. 540–548. https://doi.org/10.1016/j.enpol.2017.12.044.
Jiménez, J., Donado, K. and Quintero, C. G. (2017) ‘A methodology for short-term load forecasting’, IEEE Latin America Transactions, 15(3), pp. 400–407. https://doi.org/10.1109/TLA.2017.7867168.
Jimenez, J. et al. (2019) ‘Multivariate Statistical Analysis based Methodology for Long-Term Demand Forecasting’, IEEE Latin America Transactions, 17(01), pp. 93–101. https://doi.org/10.1109/TLA.2019.8826700.
Islam, M. A. et al. (2020) ‘Energy demand forecasting’, in Energy for Sustainable Development. Elsevier, pp. 105–123. https://doi.org/10.1016/B978-0-12-814645-3.00005-5.
IEA (2017) Electricity information overview, IEA Statistics. https://www.iea.org/publications/freepublications/publication/ElectricityInformation2017Overview.pdf.
Gulay, E. (2019) ‘Forecasting the Total Electricity Production in South Africa : Comparative Analysis to Improve the Predictive Modelling Accuracy’, 7(November 2018), pp. 88–110. https://doi.org/10.3934/energy.2019.1.88.
Rahman, A. and Ahmar, A. S. (2017) ‘Forecasting of primary energy consumption data in the United States: A comparison between ARIMA and Holter-Winters models’, in AIP Conference Proceedings, p. 020163. https://doi.org/10.1063/1.5002357.
Goodarzi, S., Perera, H. N. and Bunn, D. (2019) ‘The impact of renewable energy forecast errors on imbalance volumes and electricity spot prices’, Energy Policy. Elsevier Ltd, 134(March), pp. 110827. https://doi.org/10.1016/j.enpol.2019.06.035.
Gil, D. (2016) ‘Pronóstico de la demanda mensual de electricidad con series de tiempo’, Revista EIA, 13(26), pp. 111–120. https://doi.org/10.24050/reia.v13i26.749.
Garzón Medina, D. O. and Marulanda García, G. A. (2017) ‘Estimación del consumo eléctrico colombiano en el corto y largo plazo empleando regresión multivariable y series temporales’, AVANCES Investigación en Ingeniería, 14, p. 155. https://doi.org/10.18041/1794-4953/avances.1.1294.
Franco, C. J., Velásquez, J. D. and Olaya, I. (2008) ‘Caracterización de la demanda mensual de electricidad en Colombia usando un modelo de componentes no observables’, Cuadernos de Administración, 21(36), pp. 221–235. http://www.scielo.org.co/pdf/cadm/v21n36/v21n36a10.pdf.
EEA (2017) Final energy consumption of electricity by sector, Final energy consumption by sector and fuel. Available at: https://www.eea.europa.eu/data-and-maps/indicators/final-energy-consumption-by-sector-9/assessment-1.
Deb, C. et al. (2017) ‘A review on time series forecasting techniques for building energy consumption’, Renewable and Sustainable Energy Reviews. Elsevier Ltd, 74(February), pp. 902–924. https://doi.org/10.1016/j.rser.2017.02.085.
Box, G. E. P. and Jenkins, G. M. (1976) Time series analysis: forecasting and control. Revised Ed. San Francisco : Holden-Day.
Barreto, C. and Campo, J. (2012) ‘Relación a largo plazo entre consumo de energía y PIB en América Latina : Una evaluación empírica con datos panel using panel data’, Ecos de Economia, (35), pp. 73–89.
R Core Team (2017) ‘R: A Language and Environment for Statistical Computing’. Vienna, Austria: R Foundation for Statistical Computing. https://www.r-project.org/.
Rocha, H. R. O. et al. (2018) ‘Forecast of distributed electrical generation system capacity based on seasonal micro generators using ELM and PSO’, IEEE Latin America Transactions, 16(4), pp. 1136–1141. https://doi.org/10.1109/TLA.2018.8362148.
Revista EIA - 2020
info:eu-repo/semantics/article
Text
http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/publishedVersion
http://purl.org/redcol/resource_type/ART
http://purl.org/coar/resource_type/c_2df8fbb1
http://purl.org/coar/resource_type/c_6501
Yang, Y. et al. (2016) ‘Modelling a combined method based on ANFIS and neural network improved by DE algorithm: A case study for short-term electricity demand forecasting’, Applied Soft Computing, 49, pp. 663–675. https://doi.org/10.1016/j.asoc.2016.07.053.
Romero, F. T., Hernandez, J. D. C. J. and Lopez, W. G. (2011) ‘Predicting electricity consumption using neural networks’, IEEE Latin America Transactions, 9(7), pp. 1066–1072. https://doi.org/10.1109/TLA.2011.6129704.
XM (2018) Información inteligente. http://informacioninteligente10.xm.com.co/demanda/paginas/default.aspx.
Winters, P. R. (1960) ‘Forecasting Sales by Exponentially Weighted Moving Averages’, Management Science, 6(3), pp. 324–342. https://doi.org/10.1287/mnsc.6.3.324.
Wang, Y. et al. (2012) ‘Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: A case study of China’, Energy Policy. (Special Section: Frontiers of Sustainability), 48, pp. 284–294. https://doi.org/10.1016/j.enpol.2012.05.026.
Velásquez, J. D., Franco, C. J. and García, H. A. (2009) ‘Un modelo no lineal para la predicción de la demanda mensual de electricidad en colombia’, Estudios Gerenciales, 25(112), pp. 37–54. https://doi.org/10.1016/S0123-5923(09)70079-8.
SUI (2016) Sistema Único de Información de Servicios Públicos (SUI), Consolidado Energía. Available at: http://reportes.sui.gov.co/fabricaReportes/frameSet.jsp?idreporte=ele_com_094.
Stoffer, D. (2012) ‘astsa: Applied Statistical Time Series Analysis’.
Shyh-Jier Huang and Kuang-Rong Shih (2003) ‘Short-term load forecasting via ARMA model identification including non-gaussian process considerations’, IEEE Transactions on Power Systems. IEEE, 18(2), pp. 673–679. https://doi.org/10.1109/tpwrs.2003.811010.
Rueda, V. M., Velásquez, J. D. and Franco, C. J. (2011) ‘Avances recientes en la predicción de la demanda de electricidad usando modelos no lineales’, Dyna, 167, pp. 36–43. http://www.scielo.org.co/pdf/dyna/v78n167/a04v78n167.pdf.
Azadeh, A., Ghaderi, S. F. and Sohrabkhani, S. (2008) ‘A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran’, Energy Policy, 36(7), pp. 2637–2644. https://doi.org/10.1016/j.enpol.2008.02.035.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
https://creativecommons.org/licenses/by-nc-nd/4.0
Demanda Eléctrica
Planeación
Colombia
Modelo de Componentes
Español
Holt Winters
Minas y Canteras
Modelos de Pronóstico
18
Series de Tiempo
Jimenez, Maritza
Lotero, Laura
Arango, Adriana
Mariño, Maria D.
Pronosticar la demanda eléctrica es de suma importancia para la planeación estratégica de una nación. La literatura ofrece múltiples acercamientos para el desarrollo de modelos de pronóstico enfocados principalmente en la demanda nacional agregada, dejando de lado los análisis sectoriales, en particular a los sectores no residenciales. En este artículo, utilizando la metodología de análisis de Series de Tiempo, se ajustan, validan y comparan tres diferentes modelos para pronosticar la demanda eléctrica del sector minas y canteras, uno de los más representativos en el consumo eléctrico colombiano. Los modelos ajustados incluyen un modelo de componentes aditivo, un SARIMA y un Holt Wiatednters. Los resultados indican que el modelo que presenta un menor error de pronóstico es el modelo Holt Winters.
Estrategia
SARIMA
35
Fondo Editorial EIA - Universidad EIA
Artículo de revista
https://revistas.eia.edu.co/index.php/reveia/article/view/1458
Revista EIA
Publication
application/pdf
SARIMA
Time series forecasting for Colombian mining and quarrying electricity demand
Demand forecasting is of utmost importance for strategic decision making of a nation. Literature offers multiple approaches to the development of forecast models focused in aggregate demand, also, little attention has been paid to non-residential sector demand forecasts. In this paper, using Time Series Analysis approach, three different models are fitted, tested and compared to forecast electricity demand in mining and quarrying sector, one of the most representative non-residential sector for colombian electricity demand. Fitted models include an additive model, a SARIMA and a Holt Winters model. Results indicate that better accuracy is provided the by Holt Winters model.
Time Series
Forecasting Models
Electricity Demand
Holt Winters
Mining and Quarrying
Journal article
Colombia
Planning
Strategy
Additive Model
2020-12-31
https://revistas.eia.edu.co/index.php/reveia/article/download/1458/1378
2020-12-31 14:30:36
2463-0950
10.24050/reia.v18i35.1458
https://doi.org/10.24050/reia.v18i35.1458
23
35007 pp. 1
1794-1237
2020-12-31 14:30:36
institution UNIVERSIDAD EIA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADEIA/logo.png
country_str Colombia
collection Revista EIA
title Modelos de series temporales para pronóstico de la demanda eléctrica del sector de explotación de minas y canteras en Colombia
spellingShingle Modelos de series temporales para pronóstico de la demanda eléctrica del sector de explotación de minas y canteras en Colombia
Jimenez, Maritza
Lotero, Laura
Arango, Adriana
Mariño, Maria D.
Demanda Eléctrica
Planeación
Colombia
Modelo de Componentes
Holt Winters
Minas y Canteras
Modelos de Pronóstico
Series de Tiempo
Estrategia
SARIMA
SARIMA
Time Series
Forecasting Models
Electricity Demand
Holt Winters
Mining and Quarrying
Colombia
Planning
Strategy
Additive Model
title_short Modelos de series temporales para pronóstico de la demanda eléctrica del sector de explotación de minas y canteras en Colombia
title_full Modelos de series temporales para pronóstico de la demanda eléctrica del sector de explotación de minas y canteras en Colombia
title_fullStr Modelos de series temporales para pronóstico de la demanda eléctrica del sector de explotación de minas y canteras en Colombia
title_full_unstemmed Modelos de series temporales para pronóstico de la demanda eléctrica del sector de explotación de minas y canteras en Colombia
title_sort modelos de series temporales para pronóstico de la demanda eléctrica del sector de explotación de minas y canteras en colombia
title_eng Time series forecasting for Colombian mining and quarrying electricity demand
description Pronosticar la demanda eléctrica es de suma importancia para la planeación estratégica de una nación. La literatura ofrece múltiples acercamientos para el desarrollo de modelos de pronóstico enfocados principalmente en la demanda nacional agregada, dejando de lado los análisis sectoriales, en particular a los sectores no residenciales. En este artículo, utilizando la metodología de análisis de Series de Tiempo, se ajustan, validan y comparan tres diferentes modelos para pronosticar la demanda eléctrica del sector minas y canteras, uno de los más representativos en el consumo eléctrico colombiano. Los modelos ajustados incluyen un modelo de componentes aditivo, un SARIMA y un Holt Wiatednters. Los resultados indican que el modelo que presenta un menor error de pronóstico es el modelo Holt Winters.
description_eng Demand forecasting is of utmost importance for strategic decision making of a nation. Literature offers multiple approaches to the development of forecast models focused in aggregate demand, also, little attention has been paid to non-residential sector demand forecasts. In this paper, using Time Series Analysis approach, three different models are fitted, tested and compared to forecast electricity demand in mining and quarrying sector, one of the most representative non-residential sector for colombian electricity demand. Fitted models include an additive model, a SARIMA and a Holt Winters model. Results indicate that better accuracy is provided the by Holt Winters model.
author Jimenez, Maritza
Lotero, Laura
Arango, Adriana
Mariño, Maria D.
author_facet Jimenez, Maritza
Lotero, Laura
Arango, Adriana
Mariño, Maria D.
topicspa_str_mv Demanda Eléctrica
Planeación
Colombia
Modelo de Componentes
Holt Winters
Minas y Canteras
Modelos de Pronóstico
Series de Tiempo
Estrategia
SARIMA
topic Demanda Eléctrica
Planeación
Colombia
Modelo de Componentes
Holt Winters
Minas y Canteras
Modelos de Pronóstico
Series de Tiempo
Estrategia
SARIMA
SARIMA
Time Series
Forecasting Models
Electricity Demand
Holt Winters
Mining and Quarrying
Colombia
Planning
Strategy
Additive Model
topic_facet Demanda Eléctrica
Planeación
Colombia
Modelo de Componentes
Holt Winters
Minas y Canteras
Modelos de Pronóstico
Series de Tiempo
Estrategia
SARIMA
SARIMA
Time Series
Forecasting Models
Electricity Demand
Holt Winters
Mining and Quarrying
Colombia
Planning
Strategy
Additive Model
citationvolume 18
citationissue 35
publisher Fondo Editorial EIA - Universidad EIA
ispartofjournal Revista EIA
source https://revistas.eia.edu.co/index.php/reveia/article/view/1458
language Español
format Article
rights Revista EIA - 2020
http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
https://creativecommons.org/licenses/by-nc-nd/4.0
references Holt, C. C. (1957) Forecasting seasonals and trends by exponentially weighted moving averages. Pittsburgh, Pa.: Carnegie Institute of Technology, Graduate school of Industrial Administration.
Pérez Osorno, M. and Betancur Vargas, A. (2017) ‘Gestión del sector minero en el ámbito nacional y su relación entre el accionar gubernamental y empresarial’, Recerca. Revista de pensament i anàlisi., 0(20), pp. 157–184. https://doi.org/10.6035/Recerca.2017.20.8.
Percy, S. D., Aldeen, M. and Berry, A. (2018) ‘Residential demand forecasting with solar-battery systems: A survey-less approach’, IEEE Transactions on Sustainable Energy. IEEE, 9(4), pp. 1499–1507. https://doi.org/10.1109/TSTE.2018.2791982.
Mohandes, M. (2002) ‘Support vector machines for short-term electrical load forecasting’, International Journal of Energy Research, 26(4), pp. 335–345. doi: 10.1002/er.787. Nunes Da Silva, I. and Carli Moreira De Andrade, L. (2016) ‘Efficient neurofuzzy model to very short-term load forecasting, IEEE Latin America Transactions, 14(2), pp. 721–728. https://doi.org/10.1109/TLA.2016.7437215.
Kubli, M., Loock, M. and Wüstenhagen, R. (2018) ‘The flexible prosumer: Measuring the willingness to co-create distributed flexibility’, Energy Policy, 114(August 2017), pp. 540–548. https://doi.org/10.1016/j.enpol.2017.12.044.
Jiménez, J., Donado, K. and Quintero, C. G. (2017) ‘A methodology for short-term load forecasting’, IEEE Latin America Transactions, 15(3), pp. 400–407. https://doi.org/10.1109/TLA.2017.7867168.
Jimenez, J. et al. (2019) ‘Multivariate Statistical Analysis based Methodology for Long-Term Demand Forecasting’, IEEE Latin America Transactions, 17(01), pp. 93–101. https://doi.org/10.1109/TLA.2019.8826700.
Islam, M. A. et al. (2020) ‘Energy demand forecasting’, in Energy for Sustainable Development. Elsevier, pp. 105–123. https://doi.org/10.1016/B978-0-12-814645-3.00005-5.
IEA (2017) Electricity information overview, IEA Statistics. https://www.iea.org/publications/freepublications/publication/ElectricityInformation2017Overview.pdf.
Gulay, E. (2019) ‘Forecasting the Total Electricity Production in South Africa : Comparative Analysis to Improve the Predictive Modelling Accuracy’, 7(November 2018), pp. 88–110. https://doi.org/10.3934/energy.2019.1.88.
Rahman, A. and Ahmar, A. S. (2017) ‘Forecasting of primary energy consumption data in the United States: A comparison between ARIMA and Holter-Winters models’, in AIP Conference Proceedings, p. 020163. https://doi.org/10.1063/1.5002357.
Goodarzi, S., Perera, H. N. and Bunn, D. (2019) ‘The impact of renewable energy forecast errors on imbalance volumes and electricity spot prices’, Energy Policy. Elsevier Ltd, 134(March), pp. 110827. https://doi.org/10.1016/j.enpol.2019.06.035.
Gil, D. (2016) ‘Pronóstico de la demanda mensual de electricidad con series de tiempo’, Revista EIA, 13(26), pp. 111–120. https://doi.org/10.24050/reia.v13i26.749.
Garzón Medina, D. O. and Marulanda García, G. A. (2017) ‘Estimación del consumo eléctrico colombiano en el corto y largo plazo empleando regresión multivariable y series temporales’, AVANCES Investigación en Ingeniería, 14, p. 155. https://doi.org/10.18041/1794-4953/avances.1.1294.
Franco, C. J., Velásquez, J. D. and Olaya, I. (2008) ‘Caracterización de la demanda mensual de electricidad en Colombia usando un modelo de componentes no observables’, Cuadernos de Administración, 21(36), pp. 221–235. http://www.scielo.org.co/pdf/cadm/v21n36/v21n36a10.pdf.
EEA (2017) Final energy consumption of electricity by sector, Final energy consumption by sector and fuel. Available at: https://www.eea.europa.eu/data-and-maps/indicators/final-energy-consumption-by-sector-9/assessment-1.
Deb, C. et al. (2017) ‘A review on time series forecasting techniques for building energy consumption’, Renewable and Sustainable Energy Reviews. Elsevier Ltd, 74(February), pp. 902–924. https://doi.org/10.1016/j.rser.2017.02.085.
Box, G. E. P. and Jenkins, G. M. (1976) Time series analysis: forecasting and control. Revised Ed. San Francisco : Holden-Day.
Barreto, C. and Campo, J. (2012) ‘Relación a largo plazo entre consumo de energía y PIB en América Latina : Una evaluación empírica con datos panel using panel data’, Ecos de Economia, (35), pp. 73–89.
R Core Team (2017) ‘R: A Language and Environment for Statistical Computing’. Vienna, Austria: R Foundation for Statistical Computing. https://www.r-project.org/.
Rocha, H. R. O. et al. (2018) ‘Forecast of distributed electrical generation system capacity based on seasonal micro generators using ELM and PSO’, IEEE Latin America Transactions, 16(4), pp. 1136–1141. https://doi.org/10.1109/TLA.2018.8362148.
Yang, Y. et al. (2016) ‘Modelling a combined method based on ANFIS and neural network improved by DE algorithm: A case study for short-term electricity demand forecasting’, Applied Soft Computing, 49, pp. 663–675. https://doi.org/10.1016/j.asoc.2016.07.053.
Romero, F. T., Hernandez, J. D. C. J. and Lopez, W. G. (2011) ‘Predicting electricity consumption using neural networks’, IEEE Latin America Transactions, 9(7), pp. 1066–1072. https://doi.org/10.1109/TLA.2011.6129704.
XM (2018) Información inteligente. http://informacioninteligente10.xm.com.co/demanda/paginas/default.aspx.
Winters, P. R. (1960) ‘Forecasting Sales by Exponentially Weighted Moving Averages’, Management Science, 6(3), pp. 324–342. https://doi.org/10.1287/mnsc.6.3.324.
Wang, Y. et al. (2012) ‘Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: A case study of China’, Energy Policy. (Special Section: Frontiers of Sustainability), 48, pp. 284–294. https://doi.org/10.1016/j.enpol.2012.05.026.
Velásquez, J. D., Franco, C. J. and García, H. A. (2009) ‘Un modelo no lineal para la predicción de la demanda mensual de electricidad en colombia’, Estudios Gerenciales, 25(112), pp. 37–54. https://doi.org/10.1016/S0123-5923(09)70079-8.
SUI (2016) Sistema Único de Información de Servicios Públicos (SUI), Consolidado Energía. Available at: http://reportes.sui.gov.co/fabricaReportes/frameSet.jsp?idreporte=ele_com_094.
Stoffer, D. (2012) ‘astsa: Applied Statistical Time Series Analysis’.
Shyh-Jier Huang and Kuang-Rong Shih (2003) ‘Short-term load forecasting via ARMA model identification including non-gaussian process considerations’, IEEE Transactions on Power Systems. IEEE, 18(2), pp. 673–679. https://doi.org/10.1109/tpwrs.2003.811010.
Rueda, V. M., Velásquez, J. D. and Franco, C. J. (2011) ‘Avances recientes en la predicción de la demanda de electricidad usando modelos no lineales’, Dyna, 167, pp. 36–43. http://www.scielo.org.co/pdf/dyna/v78n167/a04v78n167.pdf.
Azadeh, A., Ghaderi, S. F. and Sohrabkhani, S. (2008) ‘A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran’, Energy Policy, 36(7), pp. 2637–2644. https://doi.org/10.1016/j.enpol.2008.02.035.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_2df8fbb1
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2020-12-31
date_accessioned 2020-12-31 14:30:36
date_available 2020-12-31 14:30:36
url https://revistas.eia.edu.co/index.php/reveia/article/view/1458
url_doi https://doi.org/10.24050/reia.v18i35.1458
issn 1794-1237
eissn 2463-0950
doi 10.24050/reia.v18i35.1458
citationstartpage 35007 pp. 1
citationendpage 23
url3_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/1458/1378
_version_ 1797159374165114880