Comparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocess

Guardado en:

2027-5846

7

2016-10-04

14

20

http://purl.org/coar/access_right/c_abf2

info:eu-repo/semantics/openAccess

Ingenierías USBmed - 2016

id 9e399457ecabe593d7c5a5f0c995b647
record_format ojs
spelling Comparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocess
7
Ingenierías USBMed
Artículo de revista
Núm. 2 , Año 2016 : Ingenierías USBMed
2
Universidad San Buenaventura - USB (Colombia)
Ospina-Alarcon, Manuel
Garcia-Tirado, Jose
Zuluaga-Bedoya, Christian
Ruiz-Botero, Maribel
Aeration
Inglés
Text
http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:eu-repo/semantics/article
L. Åmand, “Control of aeration systems in activated sludge processes – a review,” IVL Swedish Environ. Res. Institute/Department Inf. Technol. Uppsala Univ. Uppsala, Sweden, pp. 1–19, 2011. [2] A. Amicarelli, F. Di Sciascio, J. M. Toibero, and H. Alvarez, “Including dissolved oxygen dynamics into the Bt δ -Endotoxins Production process model and its application to process control,” Brazilian J. Chem. Eng., vol. 27, no. 01, pp. 41–62, 2010. [3] D. M. Atia, F. H. Fahmy, N. M. Ahmed, and H. T. Dorrah, “Design and Control Strategy of Diffused Air Aeration System,” World Acad. Sci. Eng. Technol., vol. 6, no. 3, pp. 666–670, 2012. [4] L. Åmand, G. Olsson, and B. Carlsson, “Aeration control - A review,” Water Sci. Technol., vol. 67, pp. 2374–2398, 2013. [5] H. Álvarez, R. Lamanna, P. Vega, and S. Revollar, “Metodología para la Obtención de Modelos Semifísicos de Base Fenomenológica Aplicada a una Sulfitadora de Jugo de Caña de Azúcar,” Rev. Iberoam. Automática e Informática Ind. RIAI, vol. 6, no. 3, pp. 10–20, 2009. [6] M. A. Kelland, Production Chemicals for the Oil and Gas Industry, Second Edition. CRC Press, 2014. [7] P. Hui and H. Palmer, “Uncatalyzed oxidation of aqueous sodium sulfite and its ability to simulate bacterial respiration,” Biotechnol. Bioeng., vol. 37, pp. 392–396, 1991. [8] Y. Shi, X. Zhan, L. Ma, L. Li, and C. Li, “Evaluation of antioxidants using oxidation reaction rate constants,” Front. Chem. China, vol. 2, no. 2, pp. 140–145, 2007. [9] P. M. Wilkinson, B. Doldersum, P. H. M. R. Cramers, and L. L. Van Dierendonck, “The kinetics of uncatalyzed sodium sulfite oxidation,” Chem. Eng. Sci., vol. 48, no. 5, pp. 933–941, 1993. [10] R. Hermann, N. Walther, U. Maier, and J. Buchs, “Optical method for the determination of the oxygen-transfer capacity of small bioreactors based on sulfite oxidation,” Biotechnol. Bioeng., vol. 74, no. 5, pp. 355–363, 2001. [11] E. L. Schierholz, J. S. Gulliver, S. C. Wilhelms, and H. E. Henneman, “Gas transfer from air diffusers,” Water Res., vol. 40, pp. 1018–1026, 2006. [12] K. K. Al-Ahmady, “Mathematical Model for Calculating Oxygen Mass Transfer Coefficient in Diffused Air Systems,” Al-Rafadain Eng. J., vol. 19, no. 4, pp. 43–54, 2011. [13] E. Pittoors, Y. Guo, and S. W. H. Van Hulle, “Oxygen transfer model development based on activated sludge and clean water in diffused aerated cylindrical tanks,” Chem. Eng. J., vol. 243, pp. 51–59, 2014. [14] M. Moltzer, “Analysis of Robust Stability of Model Predictive Control for Biological Wastewater Treatment Plants,” Eindhoven University of Technology, Eindhoven, Holanda, 2008. [15] M. Henze, W. Gujer, T. Mino, and M. C. M. van Loosdrecht, “Activated Sludge Models ASM1, ASM2, ASM2d and ASM3,” IWA Publ., p. 121, 2000.
Ingenierías USBmed - 2016
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/2618
Bioprocess
application/pdf
Estimation
Mass transfer coefficient
Oxygen scavenger
Journal article
Publication
Comparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocess
This paper shows a comparison of three different empirical correlations found in the literature for the estimation of the oxygen transfer coefficient in an aeration pilot plant. To this end, a phenomenological-based semi-physical model (PBSM) of the aeration pilot plant is used. This evaluation tested the relationship between empirical correlations and the oxygen transfer phenomenon from the gas phase to the liquid phase was assessed. The results show that empirical correlations of the oxygen transfer coefficient found in the literature are not based on the knowledge of the physical phenomena, and hence are not suitable to generalize the transference mechanism in other similar processes.
20
14
10.21500/20275846.2618
2016-10-04
2016-10-04T00:00:00Z
2016-10-04T00:00:00Z
2027-5846
https://doi.org/10.21500/20275846.2618
https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/2618/2383
institution UNIVERSIDAD DE SAN BUENAVENTURA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDESANBUENAVENTURA_COLOMBIA/logo.png
country_str Colombia
collection Ingenierías USBMed
title Comparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocess
spellingShingle Comparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocess
Ospina-Alarcon, Manuel
Garcia-Tirado, Jose
Zuluaga-Bedoya, Christian
Ruiz-Botero, Maribel
Aeration
Bioprocess
Estimation
Mass transfer coefficient
Oxygen scavenger
title_short Comparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocess
title_full Comparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocess
title_fullStr Comparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocess
title_full_unstemmed Comparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocess
title_sort comparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocess
title_eng Comparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocess
description_eng This paper shows a comparison of three different empirical correlations found in the literature for the estimation of the oxygen transfer coefficient in an aeration pilot plant. To this end, a phenomenological-based semi-physical model (PBSM) of the aeration pilot plant is used. This evaluation tested the relationship between empirical correlations and the oxygen transfer phenomenon from the gas phase to the liquid phase was assessed. The results show that empirical correlations of the oxygen transfer coefficient found in the literature are not based on the knowledge of the physical phenomena, and hence are not suitable to generalize the transference mechanism in other similar processes.
author Ospina-Alarcon, Manuel
Garcia-Tirado, Jose
Zuluaga-Bedoya, Christian
Ruiz-Botero, Maribel
author_facet Ospina-Alarcon, Manuel
Garcia-Tirado, Jose
Zuluaga-Bedoya, Christian
Ruiz-Botero, Maribel
topic Aeration
Bioprocess
Estimation
Mass transfer coefficient
Oxygen scavenger
topic_facet Aeration
Bioprocess
Estimation
Mass transfer coefficient
Oxygen scavenger
citationvolume 7
citationissue 2
citationedition Núm. 2 , Año 2016 : Ingenierías USBMed
publisher Universidad San Buenaventura - USB (Colombia)
ispartofjournal Ingenierías USBMed
source https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/2618
language Inglés
format Article
rights http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
Ingenierías USBmed - 2016
https://creativecommons.org/licenses/by-nc-sa/4.0/
references_eng L. Åmand, “Control of aeration systems in activated sludge processes – a review,” IVL Swedish Environ. Res. Institute/Department Inf. Technol. Uppsala Univ. Uppsala, Sweden, pp. 1–19, 2011. [2] A. Amicarelli, F. Di Sciascio, J. M. Toibero, and H. Alvarez, “Including dissolved oxygen dynamics into the Bt δ -Endotoxins Production process model and its application to process control,” Brazilian J. Chem. Eng., vol. 27, no. 01, pp. 41–62, 2010. [3] D. M. Atia, F. H. Fahmy, N. M. Ahmed, and H. T. Dorrah, “Design and Control Strategy of Diffused Air Aeration System,” World Acad. Sci. Eng. Technol., vol. 6, no. 3, pp. 666–670, 2012. [4] L. Åmand, G. Olsson, and B. Carlsson, “Aeration control - A review,” Water Sci. Technol., vol. 67, pp. 2374–2398, 2013. [5] H. Álvarez, R. Lamanna, P. Vega, and S. Revollar, “Metodología para la Obtención de Modelos Semifísicos de Base Fenomenológica Aplicada a una Sulfitadora de Jugo de Caña de Azúcar,” Rev. Iberoam. Automática e Informática Ind. RIAI, vol. 6, no. 3, pp. 10–20, 2009. [6] M. A. Kelland, Production Chemicals for the Oil and Gas Industry, Second Edition. CRC Press, 2014. [7] P. Hui and H. Palmer, “Uncatalyzed oxidation of aqueous sodium sulfite and its ability to simulate bacterial respiration,” Biotechnol. Bioeng., vol. 37, pp. 392–396, 1991. [8] Y. Shi, X. Zhan, L. Ma, L. Li, and C. Li, “Evaluation of antioxidants using oxidation reaction rate constants,” Front. Chem. China, vol. 2, no. 2, pp. 140–145, 2007. [9] P. M. Wilkinson, B. Doldersum, P. H. M. R. Cramers, and L. L. Van Dierendonck, “The kinetics of uncatalyzed sodium sulfite oxidation,” Chem. Eng. Sci., vol. 48, no. 5, pp. 933–941, 1993. [10] R. Hermann, N. Walther, U. Maier, and J. Buchs, “Optical method for the determination of the oxygen-transfer capacity of small bioreactors based on sulfite oxidation,” Biotechnol. Bioeng., vol. 74, no. 5, pp. 355–363, 2001. [11] E. L. Schierholz, J. S. Gulliver, S. C. Wilhelms, and H. E. Henneman, “Gas transfer from air diffusers,” Water Res., vol. 40, pp. 1018–1026, 2006. [12] K. K. Al-Ahmady, “Mathematical Model for Calculating Oxygen Mass Transfer Coefficient in Diffused Air Systems,” Al-Rafadain Eng. J., vol. 19, no. 4, pp. 43–54, 2011. [13] E. Pittoors, Y. Guo, and S. W. H. Van Hulle, “Oxygen transfer model development based on activated sludge and clean water in diffused aerated cylindrical tanks,” Chem. Eng. J., vol. 243, pp. 51–59, 2014. [14] M. Moltzer, “Analysis of Robust Stability of Model Predictive Control for Biological Wastewater Treatment Plants,” Eindhoven University of Technology, Eindhoven, Holanda, 2008. [15] M. Henze, W. Gujer, T. Mino, and M. C. M. van Loosdrecht, “Activated Sludge Models ASM1, ASM2, ASM2d and ASM3,” IWA Publ., p. 121, 2000.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2016-10-04
date_accessioned 2016-10-04T00:00:00Z
date_available 2016-10-04T00:00:00Z
url https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/2618
url_doi https://doi.org/10.21500/20275846.2618
eissn 2027-5846
doi 10.21500/20275846.2618
citationstartpage 14
citationendpage 20
url2_str_mv https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/2618/2383
_version_ 1798463815520616448