Caracterización microscópica de texturas superficiales fabricadas aditivamente mediante estereolitografía láser

Objetivo: En nuestro trabajo presentamos el desarrollo de texturas superficiales con diferentes geometrías fabricadas por manufactura aditiva. Metodología: Los sustratos con diferentes texturas superficiales son diseñados por medio de programas asistidos por computador (CAD). La fabricación de las diferentes superficies se realiza capa a capa, en un solo proceso, por medio de la técnica de estereolitografía láser (SLA), directamente desde los archivos CAD. Resultados: Las superficies de los sustratos fueron evaluadas mediante ensayos ópticos con el objetivo de medir la topografía de las superficies, validar el acabado superficial y controlar los métodos de fabricación a través de las estrategias de medición en diferentes perfiles. Conclusió... Ver más

Guardado en:

0122-820X

2422-5053

21

2016-07-01

37

47

http://purl.org/coar/access_right/c_abf2

info:eu-repo/semantics/openAccess

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Respuestas - 2016

id 9ade948642fa1f0ba5b4e101f39c2593
record_format ojs
spelling Caracterización microscópica de texturas superficiales fabricadas aditivamente mediante estereolitografía láser
L. M. Griffith and W. J. Halloran. “Freeform fabrication of ceramics via stereolithography”, Journal of the American Ceramic Society, vol. 79, pp. 2601-2608, 1996.
S. Kawata , H. B. Sun, T. Tanaka, and K. Takada. “Finer features for functional microdevices”, Nature, vol. 412, no. 6848, pp. 697-698, 2001.
R. Liska, M. Schuster, R. Inführ, et al. “Photopolymers for rapid prototyping”, Journal of Coatings Technology and Research, vol. 4, pp. 505-510, 2007.
S. Kenzari, D. Bonina, J. M. Dubois and V. Fourné. “Complex metallic alloys as new materials for additive manufacturing”, Science and Technology of Advanced Materials, vol. 15, no. 024802, pp. 1-9, 2014.
F. Tsumori, H. Kawanishi, K. Kudo, et al. “Development of threedimensional printing system for magnetic elastomer with control of magnetic anisotropy in the structure”, Japanese Journal of Applied Physics, vol. 55, no. 06GP18, pp. 1-5, 2016.
C. Hinczewski, S. Corbel, and T. J. Chartier. “Ceramic suspensions suitable for stereolithography”, Journal of the European Ceramic Society, vol. 18, pp. 583-590, 1998.
X. Zhang, X. N. Jiang, and C. Sun. “Micro-stereolithography of polymeric and ceramic microstructures”, Sensors and Actuators A physical, vol. 77, 149-156, 1999.
A. T. Pham, D. Kim, T. Lim, et al. “Three-Dimensional SiCN Ceramic Microstructures via NanoStereolithography of Inorganic Polymer Photoresists”, Advanced Functional Materials, Vol. 16, pp. 1235-1241, 2006.
R. D. Farahani, L. L. Lebel and D. Therriault “Processing parameters investigation for the fabrication ofselfsupported and freeform polymeric microstructures using ultravioletassisted three dimensional printing”, Journal of Micromechanics and Microengineering, vol. 24, pp. 1-12, 2014.
C. Sun, N. Fang, D. M. Wu and X. Zhang. “Projection using digital micromirror dynamic mask”, Sensors and Actuators A: Physical, vol. 121, pp. 113-120, 2005.
S. Maruo and K. Ikuta. “Submicron stereolithography for the production of freely movable mechanisms by using single-photon polymerization”, Sensors and Actuators A: Physical, vol. 100, pp. 70-76, 2002.
S. Bremen, W. Meiners, and A. Diatlov. “Laser Technik Journal”, Laser Tech. J., vol. 9, pp. 33-38, 2012.
I. Yadroitsev, P. Bertrand, and I. Smurov. “Parametric analysis of the selective laser melting process”, Appl. Surf. Sci., vol. 253, pp. 8064- 8069, 2007.
J. P. Kruth, L. Froyen, J. Van Vaerenbergh, et al. “Selective laser melting of iron-based powder”, J. Mater. Process. Technol., Vol. 149, pp. 616-622, 2004.
S. H. Ahn, M. Montero, D. Odell, et al. “Anisotropic material properties of fused deposition modeling ABS” Rapid Prototyping Journal, vol. 8, pp. 248-257, 2002.
K. V. Wong and A. Hernandez. “A Review of Additive Manufacturing”, ISRN Mechanical Engineering, vol. 2012, no. 208760, pp. 1-10, 2012.
L. L. Lebel, B. Aissa, M. A. El Khakani and D. Therriault. “Ultraviolet-assisted direct-write fabrication of carbon nanotube/polymer nanocomposite microcoils”, Advanced Materials, vol. 22, pp. 592-596, 2010.
J. Breuninger, R. Becker, A. Wolf, S. Rommel and A. Verl. Generative Fertigung mit Kunststoffen. Berlin: Springer, 2013.
B. Wendel, D. Rietzel, F. Kühnlein, et al. “Additive Processing of Polymers”, Macromolecular Materials and Engineering, vol. 293, pp. 799-809, 2008.
http://purl.org/coar/resource_type/c_6501
Text
http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/publishedVersion
http://purl.org/redcol/resource_type/ARTREF
info:eu-repo/semantics/article
T. Grimm, G. Wiora and G. Witt. “Characterization of typical surface effects in additive manufacturing with confocal microscopy”, Surface Topography: Metrology and Properties, vol. 3, pp. 1-12, 2015.
J. H. Sandoval and R. B. Wicker. “Functionalizing stereolithography resins: effects of dispersed multiwalled carbon nanotubes on physical properties” Rapid Prototyping Journal, vol. 12, pp. 292–303, 2006.
G. V. Salmoria, C. H. Ahrens, M. Fredel, V. Soldi and A. T. Pires. “Stereolithography somos 7110 resin: Mechanical behavior and fractography of parts post-cured by different methods”, Polymer Testing, vol. 24, pp. 175–162, 2005.
B. Widemann, K. H. Dusel and J. Eschl. “Investigation into the influence of material and process on part distortion”, Rapid Prototyping Journal, vol. 1, pp. 17–22, 1995.
K. Chockalingam, N. Jawahar and U. Chandrasekhar. “Influence of layer thickness on mechanical properties in stereolithography”, Rapid Prototyping Journal, vol. 12, no. 2, pp. 106–113, 2006.
S. Thomas, S. Ernst and S. Michael. “Material optimization of PA12 laser sintering powder to improve surface quality”, in ANTEC Conference proceedings (Charlotte, North Carolina, US), vol. 4, pp. 1910–1914, Society of Plastics Engineers, 2006.
R. Leach. Optical Measurement of Surface Topography, Berlin: Springer, 2011.
R. Berge. Strategy Consultants GmbH. Frankfurt. “Additive Manufacturing. A Game Changer for the Manufacturing Industry?”, 2013, [Online]. en: www.rolandberger.com/media/pdf/Roland_Berger_Additive_Manufacturing_20131129.pdf
F. P. Melchels, J. Feijen and D. W. Grijpma. “A review on stereolithography and its applications in biomedical engineering”, Biomateriales, vol. 31, pp. 6121-6130, 2010.
D. T. Pham and R. S. Gault. “A Comparison of Rapid Prototyping Technologies”, International Journal of Machine Tools and Manufacture, vol. 38, pp. 1257-1287, 1998.
K. G. Jaya Christyan, U. Chandrasekhar and K. Venkateswarlu. “A study on the influence of process parameters on the Mechanical Properties of 3D printed ABS composite”, Conference Series: Materials Science and Engineering, vol. 114, no. 012109, pp. 1-8, 2016.
Universidad Francisco de Paula Santander
Objetivo: En nuestro trabajo presentamos el desarrollo de texturas superficiales con diferentes geometrías fabricadas por manufactura aditiva. Metodología: Los sustratos con diferentes texturas superficiales son diseñados por medio de programas asistidos por computador (CAD). La fabricación de las diferentes superficies se realiza capa a capa, en un solo proceso, por medio de la técnica de estereolitografía láser (SLA), directamente desde los archivos CAD. Resultados: Las superficies de los sustratos fueron evaluadas mediante ensayos ópticos con el objetivo de medir la topografía de las superficies, validar el acabado superficial y controlar los métodos de fabricación a través de las estrategias de medición en diferentes perfiles. Conclusión: En este estudio mostramos que las texturas superficiales impresas presentaron una reducción de los valores de medidas de longitud, volumen y masa en comparación con la definida en el diseño.
Valbuena-Niño, Ely Dannier
Endrino-Armenteros, Jose Luis
Estupiñan-Duran, Hugo Armando
Pérez-Gutiérrez, Boris
Díaz-Lantada, Andrés
Manufactura aditiva
Microscopía óptica
Resina fotocurable
21
2
Artículo de revista
application/pdf
Publication
Respuestas
https://creativecommons.org/licenses/by-nc/4.0
D. W. Hutmacher and M. Sittinger and M. V. Risbud. “Scaffold based tissue engineering: rationale for computer-aided design and solid freeform fabrication systems”, Trends in Biotechnology, vol. 22, pp. 354-362, 2004.
J. Brennan-Craddock, D. Brackett, R. Wildman and R. Hague. “The design of impact absorbing structures for additive manufacture”, Journal of Physics Conference series, vol. 382, pp. 1-7, 2012.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Respuestas - 2016
https://revistas.ufps.edu.co/index.php/respuestas/article/view/771
Español
Objective: This work shows surface texture development using several different geometries produced by additive manufacturing. Methodology: The substrates with different surface textures are designed by computer aided programs (CAD). Manufacture of the different surfaces is performed in a layer by layer basis, in a single process using the laser stereolithography technique (SLA), directly from CAD files. Results: substrates surfaces were evaluated by optical tests in order to measure the topography of such surfaces, to validate the surface finishing and to control manufacturing methods by using the strategy of measurement in different profiles. Conclusion: In this study we demonstrated that the printed surface textures showed a reduction in the values of length, volume and mass measurements when compared to the ones defined in the design.
Additive Manufacturing
optical microscopy
photo-curable resin
Microscopy characterization of superficial textures additively manufactured by laser stereolithography
Journal article
0122-820X
https://doi.org/10.22463/0122820X.771
https://revistas.ufps.edu.co/index.php/respuestas/article/download/771/756
10.22463/0122820X.771
2422-5053
37
47
2016-07-01T00:00:00Z
2016-07-01
2016-07-01T00:00:00Z
institution UNIVERSIDAD FRANCISCO DE PAULA SANTANDER
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADFRANCISCODEPAULASANTANDER/logo.png
country_str Colombia
collection Respuestas
title Caracterización microscópica de texturas superficiales fabricadas aditivamente mediante estereolitografía láser
spellingShingle Caracterización microscópica de texturas superficiales fabricadas aditivamente mediante estereolitografía láser
Valbuena-Niño, Ely Dannier
Endrino-Armenteros, Jose Luis
Estupiñan-Duran, Hugo Armando
Pérez-Gutiérrez, Boris
Díaz-Lantada, Andrés
Manufactura aditiva
Microscopía óptica
Resina fotocurable
Additive Manufacturing
optical microscopy
photo-curable resin
title_short Caracterización microscópica de texturas superficiales fabricadas aditivamente mediante estereolitografía láser
title_full Caracterización microscópica de texturas superficiales fabricadas aditivamente mediante estereolitografía láser
title_fullStr Caracterización microscópica de texturas superficiales fabricadas aditivamente mediante estereolitografía láser
title_full_unstemmed Caracterización microscópica de texturas superficiales fabricadas aditivamente mediante estereolitografía láser
title_sort caracterización microscópica de texturas superficiales fabricadas aditivamente mediante estereolitografía láser
title_eng Microscopy characterization of superficial textures additively manufactured by laser stereolithography
description Objetivo: En nuestro trabajo presentamos el desarrollo de texturas superficiales con diferentes geometrías fabricadas por manufactura aditiva. Metodología: Los sustratos con diferentes texturas superficiales son diseñados por medio de programas asistidos por computador (CAD). La fabricación de las diferentes superficies se realiza capa a capa, en un solo proceso, por medio de la técnica de estereolitografía láser (SLA), directamente desde los archivos CAD. Resultados: Las superficies de los sustratos fueron evaluadas mediante ensayos ópticos con el objetivo de medir la topografía de las superficies, validar el acabado superficial y controlar los métodos de fabricación a través de las estrategias de medición en diferentes perfiles. Conclusión: En este estudio mostramos que las texturas superficiales impresas presentaron una reducción de los valores de medidas de longitud, volumen y masa en comparación con la definida en el diseño.
description_eng Objective: This work shows surface texture development using several different geometries produced by additive manufacturing. Methodology: The substrates with different surface textures are designed by computer aided programs (CAD). Manufacture of the different surfaces is performed in a layer by layer basis, in a single process using the laser stereolithography technique (SLA), directly from CAD files. Results: substrates surfaces were evaluated by optical tests in order to measure the topography of such surfaces, to validate the surface finishing and to control manufacturing methods by using the strategy of measurement in different profiles. Conclusion: In this study we demonstrated that the printed surface textures showed a reduction in the values of length, volume and mass measurements when compared to the ones defined in the design.
author Valbuena-Niño, Ely Dannier
Endrino-Armenteros, Jose Luis
Estupiñan-Duran, Hugo Armando
Pérez-Gutiérrez, Boris
Díaz-Lantada, Andrés
author_facet Valbuena-Niño, Ely Dannier
Endrino-Armenteros, Jose Luis
Estupiñan-Duran, Hugo Armando
Pérez-Gutiérrez, Boris
Díaz-Lantada, Andrés
topicspa_str_mv Manufactura aditiva
Microscopía óptica
Resina fotocurable
topic Manufactura aditiva
Microscopía óptica
Resina fotocurable
Additive Manufacturing
optical microscopy
photo-curable resin
topic_facet Manufactura aditiva
Microscopía óptica
Resina fotocurable
Additive Manufacturing
optical microscopy
photo-curable resin
citationvolume 21
citationissue 2
publisher Universidad Francisco de Paula Santander
ispartofjournal Respuestas
source https://revistas.ufps.edu.co/index.php/respuestas/article/view/771
language Español
format Article
rights http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/4.0
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Respuestas - 2016
references L. M. Griffith and W. J. Halloran. “Freeform fabrication of ceramics via stereolithography”, Journal of the American Ceramic Society, vol. 79, pp. 2601-2608, 1996.
S. Kawata , H. B. Sun, T. Tanaka, and K. Takada. “Finer features for functional microdevices”, Nature, vol. 412, no. 6848, pp. 697-698, 2001.
R. Liska, M. Schuster, R. Inführ, et al. “Photopolymers for rapid prototyping”, Journal of Coatings Technology and Research, vol. 4, pp. 505-510, 2007.
S. Kenzari, D. Bonina, J. M. Dubois and V. Fourné. “Complex metallic alloys as new materials for additive manufacturing”, Science and Technology of Advanced Materials, vol. 15, no. 024802, pp. 1-9, 2014.
F. Tsumori, H. Kawanishi, K. Kudo, et al. “Development of threedimensional printing system for magnetic elastomer with control of magnetic anisotropy in the structure”, Japanese Journal of Applied Physics, vol. 55, no. 06GP18, pp. 1-5, 2016.
C. Hinczewski, S. Corbel, and T. J. Chartier. “Ceramic suspensions suitable for stereolithography”, Journal of the European Ceramic Society, vol. 18, pp. 583-590, 1998.
X. Zhang, X. N. Jiang, and C. Sun. “Micro-stereolithography of polymeric and ceramic microstructures”, Sensors and Actuators A physical, vol. 77, 149-156, 1999.
A. T. Pham, D. Kim, T. Lim, et al. “Three-Dimensional SiCN Ceramic Microstructures via NanoStereolithography of Inorganic Polymer Photoresists”, Advanced Functional Materials, Vol. 16, pp. 1235-1241, 2006.
R. D. Farahani, L. L. Lebel and D. Therriault “Processing parameters investigation for the fabrication ofselfsupported and freeform polymeric microstructures using ultravioletassisted three dimensional printing”, Journal of Micromechanics and Microengineering, vol. 24, pp. 1-12, 2014.
C. Sun, N. Fang, D. M. Wu and X. Zhang. “Projection using digital micromirror dynamic mask”, Sensors and Actuators A: Physical, vol. 121, pp. 113-120, 2005.
S. Maruo and K. Ikuta. “Submicron stereolithography for the production of freely movable mechanisms by using single-photon polymerization”, Sensors and Actuators A: Physical, vol. 100, pp. 70-76, 2002.
S. Bremen, W. Meiners, and A. Diatlov. “Laser Technik Journal”, Laser Tech. J., vol. 9, pp. 33-38, 2012.
I. Yadroitsev, P. Bertrand, and I. Smurov. “Parametric analysis of the selective laser melting process”, Appl. Surf. Sci., vol. 253, pp. 8064- 8069, 2007.
J. P. Kruth, L. Froyen, J. Van Vaerenbergh, et al. “Selective laser melting of iron-based powder”, J. Mater. Process. Technol., Vol. 149, pp. 616-622, 2004.
S. H. Ahn, M. Montero, D. Odell, et al. “Anisotropic material properties of fused deposition modeling ABS” Rapid Prototyping Journal, vol. 8, pp. 248-257, 2002.
K. V. Wong and A. Hernandez. “A Review of Additive Manufacturing”, ISRN Mechanical Engineering, vol. 2012, no. 208760, pp. 1-10, 2012.
L. L. Lebel, B. Aissa, M. A. El Khakani and D. Therriault. “Ultraviolet-assisted direct-write fabrication of carbon nanotube/polymer nanocomposite microcoils”, Advanced Materials, vol. 22, pp. 592-596, 2010.
J. Breuninger, R. Becker, A. Wolf, S. Rommel and A. Verl. Generative Fertigung mit Kunststoffen. Berlin: Springer, 2013.
B. Wendel, D. Rietzel, F. Kühnlein, et al. “Additive Processing of Polymers”, Macromolecular Materials and Engineering, vol. 293, pp. 799-809, 2008.
T. Grimm, G. Wiora and G. Witt. “Characterization of typical surface effects in additive manufacturing with confocal microscopy”, Surface Topography: Metrology and Properties, vol. 3, pp. 1-12, 2015.
J. H. Sandoval and R. B. Wicker. “Functionalizing stereolithography resins: effects of dispersed multiwalled carbon nanotubes on physical properties” Rapid Prototyping Journal, vol. 12, pp. 292–303, 2006.
G. V. Salmoria, C. H. Ahrens, M. Fredel, V. Soldi and A. T. Pires. “Stereolithography somos 7110 resin: Mechanical behavior and fractography of parts post-cured by different methods”, Polymer Testing, vol. 24, pp. 175–162, 2005.
B. Widemann, K. H. Dusel and J. Eschl. “Investigation into the influence of material and process on part distortion”, Rapid Prototyping Journal, vol. 1, pp. 17–22, 1995.
K. Chockalingam, N. Jawahar and U. Chandrasekhar. “Influence of layer thickness on mechanical properties in stereolithography”, Rapid Prototyping Journal, vol. 12, no. 2, pp. 106–113, 2006.
S. Thomas, S. Ernst and S. Michael. “Material optimization of PA12 laser sintering powder to improve surface quality”, in ANTEC Conference proceedings (Charlotte, North Carolina, US), vol. 4, pp. 1910–1914, Society of Plastics Engineers, 2006.
R. Leach. Optical Measurement of Surface Topography, Berlin: Springer, 2011.
R. Berge. Strategy Consultants GmbH. Frankfurt. “Additive Manufacturing. A Game Changer for the Manufacturing Industry?”, 2013, [Online]. en: www.rolandberger.com/media/pdf/Roland_Berger_Additive_Manufacturing_20131129.pdf
F. P. Melchels, J. Feijen and D. W. Grijpma. “A review on stereolithography and its applications in biomedical engineering”, Biomateriales, vol. 31, pp. 6121-6130, 2010.
D. T. Pham and R. S. Gault. “A Comparison of Rapid Prototyping Technologies”, International Journal of Machine Tools and Manufacture, vol. 38, pp. 1257-1287, 1998.
K. G. Jaya Christyan, U. Chandrasekhar and K. Venkateswarlu. “A study on the influence of process parameters on the Mechanical Properties of 3D printed ABS composite”, Conference Series: Materials Science and Engineering, vol. 114, no. 012109, pp. 1-8, 2016.
D. W. Hutmacher and M. Sittinger and M. V. Risbud. “Scaffold based tissue engineering: rationale for computer-aided design and solid freeform fabrication systems”, Trends in Biotechnology, vol. 22, pp. 354-362, 2004.
J. Brennan-Craddock, D. Brackett, R. Wildman and R. Hague. “The design of impact absorbing structures for additive manufacture”, Journal of Physics Conference series, vol. 382, pp. 1-7, 2012.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2016-07-01
date_accessioned 2016-07-01T00:00:00Z
date_available 2016-07-01T00:00:00Z
url https://revistas.ufps.edu.co/index.php/respuestas/article/view/771
url_doi https://doi.org/10.22463/0122820X.771
issn 0122-820X
eissn 2422-5053
doi 10.22463/0122820X.771
citationstartpage 37
citationendpage 47
url2_str_mv https://revistas.ufps.edu.co/index.php/respuestas/article/download/771/756
_version_ 1797158507292655616