Las generaciones de las vacunas: Caso de vacunas antiparasitarias gastrointestinales utilizadas en Medicina Veterinaria

Las vacunas son el pilar fundamental de la medicina preventiva y la base para posibles planes de control y/o erradicación de enfermedades, especialmente las infecciosas. Los parásitos internos en los animales de producción y de compañía continúan siendo una de las principales amenazas para la salud y el bienestar animal con importantes implicaciones económicas, además de su impacto en la salud pública mundial. Su control se ha basado casi exclusivamente en fármacos quimioterápicos, que desde hace varios años han perdido su eficacia y existen claros ejemplos de resistencia parasitaria a ellos. Hay pocos ejemplos comerciales de vacunas de parásitos gastrointestinales disponibles comercialmente para su uso en la práctica de la Medicina Veterin... Ver más

Guardado en:

2248-4817

12

2021-12-15

74

96

http://purl.org/coar/access_right/c_abf2

info:eu-repo/semantics/openAccess

Revista Sistemas de Producción Agroecológicos - 2021

id 68445c1d1e13c68113e339028b847a8e
record_format ojs
spelling Las generaciones de las vacunas: Caso de vacunas antiparasitarias gastrointestinales utilizadas en Medicina Veterinaria
Loukas A, Good F. Back to the future for antiparasite vaccines?. Expert review of vaccines, 2013;12(1):1-4.
Petavy F, Hormaeche C, Lahmar S, Ouhelli H, Chabalgoity A, Marchal T, Azzouz S, Schreiber F, Alvite G, Sarciron E, Maskell D, Esteves A, Bosquet G. An oral recombinant vaccine in dogs against Echinococcus granulosus, the causative agent of human hydatid disease: a pilot study. PLoS neglected tropical diseases, 2008;2(1):125.
Newton E, Munn A. The development of vaccines against gastrointestinal nematode parasites, particularly Haemonchus contortus. Parasitology today (Personal ed.), 1999;15(3):116–122.
Murray K. Molecular vaccines against animal parasites. Vaccine, 1989;7(4):291–299.
Munn A, Greenwood A, Coadwell J. Vaccination of young lambs by means of a protein fraction extracted from adult Haemonchus contortus. Parasitology, 1987;94(2):385–397.
Morrison I, Tomley F. Development of vaccines for parasitic diseases of animals: Challenges and opportunities. Parasite immunology, 2016;38(12):707–708.
Monahan M, Taylor W, Chapman R, Klei R. Experimental immunization of ponies with Strongylus vulgaris radiation-attenuated larvae or crude soluble somatic extracts from larval or adult stages. The Journal of parasitology, 1994;80(6):911–923.
Meeusen N, Walker J, Peters A, Pastoret P, Jungersen G. Current status of veterinary vaccines. Clinical microbiology reviews, 2007;20(3),489–510.
Meeusen N, Balic A, Bowles V. Cells, cytokines and other molecules associated with rejection of gastrointestinal nematode parasites. Veterinary immunology and immunopathology, 2005;108(1-2):121–125.
McVey S, Shi J. Vaccines in veterinary medicine: a brief review of history and technology. The Veterinary clinics of North America. Small animal practice, 2010;40(3),381–392.
Marciani J. Effects of immunomodulators on the response induced by vaccines against autoimmune diseases. Autoimmunity, 2017;50(7),393–402.
Maizels M, Hewitson P, Smith A. Susceptibility and immunity to helminth parasites. Current opinion in immunology, 2012;24(4):459–466.
Li K, Lan Y, Luo H, Shahzad M, Zhang H, Wang L, Zhang L, Liu D, Liu X, Hao Y, Sizhu S, Li J. Prevalence of three Oesophagostomum spp. from Tibetan Pigs analyzed by Genetic Markers of nad1, cox3 and ITS1. Acta parasitologica, 2017;62(1):90–96.
Rodríguez G, Olivares L. Vacunas parasitarias: un recuento bibliográfico. Revista de Salud Animal, 2019;41(3):08.
Li J. Zheng J, Gong P, Zhang X. Efficacy of Eimeria tenella rhomboid-like protein as a subunit vaccine in protective immunity against homologous challenge. Parasitology research, 2012;110(3):1139–1145.
Krieg M. CpG motifs in bacterial DNA and their immune effects. Annual review of immunology, 2002;20(1):709-760.
Krammer, F. SARS-CoV-2 vaccines in development. Nature, 2020;586(7830):516-527.
Knox P, Smith D. Vaccination against gastrointestinal nematode parasites of ruminants using gut-expressed antigens. Veterinary parasitology, 2001;100(1-2), 21–32
Klei R, French D, Chapman R, McClure R, Dennis A, Taylor W, Hutchinson W. Protection of yearling ponies against Strongylus vulgaris by foalhood vaccination. Equine veterinary journal. Supplement, 1989;(7):2–7.
Klei R. Equine immunity to parasites. The Veterinary clinics of North America. Equine practice, 2000;16(1):69–vi.
Jourdan M, Lamberton L, Fenwick A, Addiss G. Soil-transmitted helminth infections. Lancet. 2018;391(10117):252-265.
Jorge S, Dellagostin A. The development of veterinary vaccines: a review of traditional methods and modern biotechnology approaches. Biotechnology Research and Innovation, 2017;1(1),6–13.
Jaramillo A, Salazar F, Pacheco C, Pinheiro S, Alcantara M. Protective response mediated by immunization with recombinant proteins in a murine model of toxocariasis and canine infection by Toxocara canis. Vaccine, 2022;40(6):912-923.
Jaramillo D, Salazar F, Baquero M, Pinheiro S, Alcantara M. Toxocariasis and Toxocara vaccine: a review. Revista Orinoquia, 2020;24:79-95.
Hotez J, Fenwick A, Savioli L, Molyneux H. Rescuing the bottom billion through control of neglected tropical diseases. Lancet (London, England), 2009;373(9674):1570–1575.
Reinemeyer R, Nielsen K. Parasitism and colic. The Veterinary clinics of North America. Equine practice, 2009;25(2):233–245.
Salazar F, Santiago F, Santos S, Jaramillo A, da Silva B, Alves V, Silveira F, Barrouin M, Cooper J, Pacheco L, Pinheiro C, Alcantara M. Immunogenicity and protection induced by recombinant Toxocara canis proteins in a murine model of toxocariasis. Vaccine, 2020;38(30):4762–4772.
Hein R, Harrison B. Vaccines against veterinary helminths. Veterinary parasitology, 2005;132(3-4):217–222.
Wedrychowicz H. Antiparasitic DNA vaccines in 21st century. Acta Parasitologica, 2015;60(2):179-189.
Text
http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/publishedVersion
http://purl.org/redcol/resource_type/ARTREF
http://purl.org/coar/resource_type/c_6501
info:eu-repo/semantics/article
Zhang W, Zhang Z, Shi B, Li J, You H, Tulson G, Dang X, Song Y, Yimiti T, Wang J, Jones K, McManus P. Vaccination of dogs against Echinococcus granulosus, the cause of cystic hydatid disease in humans. The Journal of infectious diseases, 2006;194(7):966–974.
Xu J, Zhang Y, Tao J. Efficacy of a DNA vaccine carrying Eimeria maxima Gam56 antigen gene against coccidiosis in chickens. The Korean journal of parasitology, 2013;51(2):147–154.
World Health Organization (WHO), Echinococcosis fact sheet, Disponible en: https://www.who.int/news-room/fact-sheets/detail/echinococcosis.2020.
Wallach M, Smith C, Petracca M, Miller M, Eckert J, Braun R. Eimeria maxima gametocyte antigens: potential use in a subunit maternal vaccine against coccidiosis in chickens. Vaccine, 1995;13(4):347–354.
Seib L, Zhao X, Rappuoli R. Developing vaccines in the era of genomics: a decade of reverse vaccinology. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 2012;18(5):109–116.
Vlaminck J, Martinez M, Dewilde S, Moens L, Tilleman K, Deforce D, Urban J, Claerebout E, Vercruysse J, Geldhof P. Immunizing pigs with Ascaris suum haemoglobin increases the inflammatory response in the liver but fails to induce a protective immunity. Parasite immunology,2011;33(4):250–254.
Vetter V, Denizer G, Friedland R, Krishnan J, Shapiro M. Understanding modern-day vaccines: what you need to know. Annals of medicine, 2018;50(2):110–120.
Versteeg L, Almutairi M, Hotez J, Pollet J. Enlisting the mRNA Vaccine Platform to Combat Parasitic Infections. Vaccines, 2019;7(4),122.
Vargas M, Prieto D, Baquero M, Corredor W, Alcantara M, Jaramillo D. Vaccines for gastrointestinal parasites, a pillar of preventive medicine in veterinary practice: Systematic review. Revista de Investigación Agraria y Ambiental, 2022;13(1): 221-251.
Unnikrishnan M, Rappuoli R, Serruto D. Recombinant bacterial vaccines. Current opinion in immunology, 2012;24(3):337–342.
Tyagi R, Joachim A, Ruttkowski B, Rosa A, Martin C, Hallsworth K, Zhang X, Ozersky P, Wilson K, Ranganathan S, Sternberg W, Gasser B, Mitreva M. Cracking the nodule worm code advances knowledge of parasite biology and biotechnology to tackle major diseases of livestock. Biotechnology advances, 2015;33(6Pt1):980–991.
Swiderski E, Klei R, Folsom W, Pourciau S, Chapman A, Chapman R, Moore M, McClure R, Taylor W, Horohov W. Vaccination against Strongylus vulgaris in ponies: comparison of the humoral and cytokine responses of vaccinates and nonvaccinates. Advances in veterinary medicine, 1999;41:389–404.
Sun C, Beilke N, Lanier L. Adaptive immune features of natural killer cells. Nature, 2009;457(7229):557–561.
Song X, Xu L, Yan R, Huang X, Shah A, Li X. The optimal immunization procedure of DNA vaccine pcDNA-TA4-IL-2 of Eimeria tenella and its cross-immunity to Eimeria necatrix and Eimeria acervulina. Veterinary parasitology, 2009;159(1):30–36.
Song H, Yan R, Xu L, Song X, Shah A, Zhu H, Li X. Efficacy of DNA vaccines carrying Eimeria acervulina lactate dehydrogenase antigen gene against coccidiosis. Experimental parasitology, 2010;126(2), 224–231.
Siefker C, Rickard G. Vaccination of calves with Haemonchus placei intestinal homogenate. Veterinary parasitology, 2000;88(3-4),249–260.
Hill E, Fetterer H, Romanowski D, Urban Jr. The effect of immunization of pigs with Ascaris suum cuticle components on the development of resistance to parenteral migration during a challenge infection. Veterinary immunology and immunopathology, 1994;42(2):161–169.
Harrison B, Shakes R, Robinson M, Lawrence B, Heath D, Dempster P, Lightowlers W, Rickard D. Duration of immunity, efficacy and safety in sheep of a recombinant Taenia ovis vaccine formulated with saponin or selected adjuvants. Veterinary immunology and immunopathology, 1999;70(3-4):161–172.
Goldsby A, Kindt J, Osborne A, Kuby J. vaccines. In: Mc Graw Hill,editors. Kuby Immunology, 6th edition, New york: E.Publishing Inc; 2007:475-490.
zoonose
Español
https://revistas.unillanos.edu.co/index.php/sistemasagroecologicos/article/view/879
Revista Sistemas de Producción Agroecológicos
Universidad de los Llanos
application/pdf
Artículo de revista
2
12
saúde pública
Revista Sistemas de Producción Agroecológicos - 2021
Manejo integrado de parasitas internos
zoonosis
salud pública
Manejo integrado de parásitos internos
Jaramillo Hernández, Dumar Alexander
Vargas Borda , Lina Maria
Prieto Prieto, Laura Daniela
Las vacunas son el pilar fundamental de la medicina preventiva y la base para posibles planes de control y/o erradicación de enfermedades, especialmente las infecciosas. Los parásitos internos en los animales de producción y de compañía continúan siendo una de las principales amenazas para la salud y el bienestar animal con importantes implicaciones económicas, además de su impacto en la salud pública mundial. Su control se ha basado casi exclusivamente en fármacos quimioterápicos, que desde hace varios años han perdido su eficacia y existen claros ejemplos de resistencia parasitaria a ellos. Hay pocos ejemplos comerciales de vacunas de parásitos gastrointestinales disponibles comercialmente para su uso en la práctica de la Medicina Veterinaria. Esta revisión describe algunos ejemplos comerciales de vacunas gastrointestinales antiparasitarias para su formulación en la práctica médica veterinaria, visto desde la perspectiva de “las generaciones de vacunas” y respaldado por estudios clínicos experimentales de antígenos prometedores para el control profiláctico de ciertos agentes parasitarios gastrointestinales de interés en salud pública principalmente. Hasta la fecha, está disponible con ciertas limitaciones comerciales en algunos países europeos y oceánicos Barbervax® y en países sudamericanos Providean® Hidatil EG95 para uso en rumiantes para el control de Haemonchus contortus y Echinococcus granulosus, respectivamente; en algunos países de América y África, Cysvax™ está disponible para el control de Taenia solium en cerdos; y en el mundo con muy pocas limitaciones, una serie de vacunas comerciales para el control de la coccidosis como la Eimeria spp. en la industria avícola: pavos, pollos de engorde y gallinas ponedoras (ej: CocciVac®, Immucox®, Paracox®, entre otros). Existe la necesidad de tener estos tipos de vacunas en todos los países donde estos parásitos gastrointestinales son endémicos y de esta manera brindar opciones para su control, por consiguiente, una serie de inversiones económicas son necesarias para apoyar el desarrollo técnico-científico en torno al desarrollo de nuevos biológicos (nueva generaciones de vacunas) efectivos y seguros para el control de los parásitos internos más relevantes en animales de producción y de compañía.
https://creativecommons.org/licenses/by-nc-sa/4.0/
Publication
Babu S, Nutman T. Immune Responses to Helminth Infection. Clinical Immunology, 2019:437-447.
Clem S. Fundamentals of vaccine immunology. Journal of global infectious diseases, 2011;3(1):73–78.
Gauci G, Jayashi M, Gonzalez E, Lackenby J, Lightowlers W. Protection of pigs against Taenia solium cysticercosis by immunization with novel recombinant antigens. Vaccine, 2012;30(26):3824–3828.
Fujiwara T, Zhan B, Mendez S, Loukas A, Bueno L, Wang Y, Plieskatt J, Oksov Y, Lustigman S, Bottazzi E, Hotez P, Bethony M. Reduction of worm fecundity and canine host blood loss mediates protection against hookworm infection elicited by vaccination with recombinant Ac-16. Clinical and vaccine immunology, 2007;14(3):281–287.
Foster N, Berndt A, Lalmanach C, Methner U, Pasquali P, Rychlik I, Velge, P, Zhou X, Barrow P. Emergency and therapeutic vaccination--is stimulating innate immunity an option?. Research in veterinary science, 2012;93(1),7–12.
Emery L, McClure J, Wagland M. Production of vaccines against gastrointestinal nematodes of livestock. Immunology and cell biology, 1993;71(5):463–472.
East J, Berrie A, Fitzgerald J. Oesophagostomum radiatum: successful vaccination of calves with an extract of in vitro cultured larvae. International journal for parasitology, 1988,18(1):125–127.
Dunham P. The application of nucleic acid vaccines in veterinary medicine. Research in veterinary science, 2002;73(1):9–16.
Di Pasquale A, Preiss S, Tavares Da Silva F, Garçon N. Vaccine Adjuvants: from 1920 to 2015 and Beyond. Vaccines, 2015;3(2):320–343.
Dhama K, Mahendran M, Gupta K, Rai A. DNA vaccines and their applications in veterinary practice: current perspectives. Veterinary research communications, 2008;32(5),341-356.
Dalton P, Mulcahy G. Parasite vaccines--a reality?. Veterinary parasitology, 2001;98(1-3):149–167.
Cruz V, Rosado E, Dumonteil E. Desarrollo de vacunas contra parásitos. Revista Ciencia, 2017;68(1):81-85.
Cox C, Coulter R. Adjuvants--a classification and review of their modes of action. Vaccine, 1997;15(3):248–256.
Coban C, Koyama S, Takeshita F, Akira S, Ishii J. Molecular and cellular mechanisms of DNA vaccines. Human vaccines, 2008;4(6):453–456.
Calamante, G. Desarrollo de vacunas de nueva generación Desarrollo de vacunas de nueva generación, 2018. Disponible en: http://ria.inta.gob.ar/contenido/desarrollo-de-vacunas-de-nueva-generacion-para-uso-veterinario?l=es
Chambers A, Graham P, La Ragione M. Challenges in Veterinary Vaccine Development and Immunization. Methods in molecular biology (Clifton, N.J.), 2016;1404:3–35.
Bomford R. Adjuvants for anti-parasite vaccines. Parasitology today (Personal ed.), 1989;5(2):41–46.
Bagnoli F, Baudner B, Mishra P, Bartolini E, Fiaschi L, Mariotti P, Nardi-Dei V, Boucher P, Rappuoli R. Designing the next generation of vaccines for global public health. Omics: a journal of integrative biology, 2011;15(9):545–566.
Bethony M, Cole N, Guo X, Kamhawi S, Lightowlers W, Loukas A, Petri W., Reed S, Valenzuela G, Hotez J. Vaccines to combat the neglected tropical diseases. Immunological reviews, 2011;239(1):237–270.
Bąska P, Wiśniewski M, Krzyżowska M, Długosz E, Zygner W, Górski P, Wędrychowicz H. Molecular cloning and characterisation of in vitro immune response against astacin-like metalloprotease Ace-MTP-2 from Ancylostoma ceylanicum. Experimental parasitology, 2013;133(4):472–482.
Bassetto C, Picharillo É, Newlands F, Smith D, Fernandes S, Siqueira R, Amarante F. Attempts to vaccinate ewes and their lambs against natural infection with Haemonchus contortus in a tropical environment. International journal for parasitology, 2014;44(14):1049–1054.
Internal parasite management
Journal article
Vaccines are the fundamental pillar of preventive medicine and the basis for possible control and/or eradication of disease plans, especially infectious diseases. Internal parasites in production and companion animals continue to be one of the main threats to animal health and welfare with important economic implications, in addition to its impact on global public health. Its control has been based almost exclusively on chemotherapeutic drugs, which for several years have lost their efficacy and there are clear examples of parasitic resistance to them. Even so, few commercial examples of gastrointestinal parasite vaccines are commercially available for use in the practice of Veterinary Medicine. This review describes some commercial examples of gastrointestinal antiparasitic vaccines for their formulation in veterinary medical practice seen from the perspective of “the generations of vaccines'' and supported by experimental clinical studies of promising antigens for the prophylactic control of certain gastrointestinal parasitic agents of interest in public health mainly. To date, it is available with certain commercial limitations in some European and Australian countries Barbervax® and in South American countries Providean® Hidatil EG95 for use in ruminants for the control of Haemonchus contortus and Echinococcus granulosus, respectively; in some countries in America and Africa, Cysvax™ is available for the control of Taenia solium in pigs and in the world with very few limitations, a series of commercial vaccines for the control of coccidosis (Eimeria spp.) in poultry industry: turkeys, broilers and laying hens (e.g., CocciVac®, Immucox®, Paracox®, among others). There is a need to provide this type of vaccine to all countries where these gastrointestinal parasites are endemic and, in this way, provide options for their control. As well as a series of economic investments is highly necessary to support technical-scientific development around development of new effective and safe biologicals (new generations of vaccines) for the control of the most relevant internal parasites in production and companion animals.
The generations of the vaccines: Case of gastrointestinal antiparasitic vaccines used in Veterinary Medicine
zoonose
public health
2021-12-15T00:00:00Z
74
https://doi.org/10.22579/22484817.879
https://revistas.unillanos.edu.co/index.php/sistemasagroecologicos/article/download/879/945
2021-12-15T00:00:00Z
2248-4817
96
2021-12-15
10.22579/22484817.879
institution UNIVERSIDAD DE LOS LLANOS
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDELOSLLANOS/logo.png
country_str Colombia
collection Revista Sistemas de Producción Agroecológicos
title Las generaciones de las vacunas: Caso de vacunas antiparasitarias gastrointestinales utilizadas en Medicina Veterinaria
spellingShingle Las generaciones de las vacunas: Caso de vacunas antiparasitarias gastrointestinales utilizadas en Medicina Veterinaria
Jaramillo Hernández, Dumar Alexander
Vargas Borda , Lina Maria
Prieto Prieto, Laura Daniela
zoonose
saúde pública
Manejo integrado de parasitas internos
zoonosis
salud pública
Manejo integrado de parásitos internos
Internal parasite management
zoonose
public health
title_short Las generaciones de las vacunas: Caso de vacunas antiparasitarias gastrointestinales utilizadas en Medicina Veterinaria
title_full Las generaciones de las vacunas: Caso de vacunas antiparasitarias gastrointestinales utilizadas en Medicina Veterinaria
title_fullStr Las generaciones de las vacunas: Caso de vacunas antiparasitarias gastrointestinales utilizadas en Medicina Veterinaria
title_full_unstemmed Las generaciones de las vacunas: Caso de vacunas antiparasitarias gastrointestinales utilizadas en Medicina Veterinaria
title_sort las generaciones de las vacunas: caso de vacunas antiparasitarias gastrointestinales utilizadas en medicina veterinaria
title_eng The generations of the vaccines: Case of gastrointestinal antiparasitic vaccines used in Veterinary Medicine
description Las vacunas son el pilar fundamental de la medicina preventiva y la base para posibles planes de control y/o erradicación de enfermedades, especialmente las infecciosas. Los parásitos internos en los animales de producción y de compañía continúan siendo una de las principales amenazas para la salud y el bienestar animal con importantes implicaciones económicas, además de su impacto en la salud pública mundial. Su control se ha basado casi exclusivamente en fármacos quimioterápicos, que desde hace varios años han perdido su eficacia y existen claros ejemplos de resistencia parasitaria a ellos. Hay pocos ejemplos comerciales de vacunas de parásitos gastrointestinales disponibles comercialmente para su uso en la práctica de la Medicina Veterinaria. Esta revisión describe algunos ejemplos comerciales de vacunas gastrointestinales antiparasitarias para su formulación en la práctica médica veterinaria, visto desde la perspectiva de “las generaciones de vacunas” y respaldado por estudios clínicos experimentales de antígenos prometedores para el control profiláctico de ciertos agentes parasitarios gastrointestinales de interés en salud pública principalmente. Hasta la fecha, está disponible con ciertas limitaciones comerciales en algunos países europeos y oceánicos Barbervax® y en países sudamericanos Providean® Hidatil EG95 para uso en rumiantes para el control de Haemonchus contortus y Echinococcus granulosus, respectivamente; en algunos países de América y África, Cysvax™ está disponible para el control de Taenia solium en cerdos; y en el mundo con muy pocas limitaciones, una serie de vacunas comerciales para el control de la coccidosis como la Eimeria spp. en la industria avícola: pavos, pollos de engorde y gallinas ponedoras (ej: CocciVac®, Immucox®, Paracox®, entre otros). Existe la necesidad de tener estos tipos de vacunas en todos los países donde estos parásitos gastrointestinales son endémicos y de esta manera brindar opciones para su control, por consiguiente, una serie de inversiones económicas son necesarias para apoyar el desarrollo técnico-científico en torno al desarrollo de nuevos biológicos (nueva generaciones de vacunas) efectivos y seguros para el control de los parásitos internos más relevantes en animales de producción y de compañía.
description_eng Vaccines are the fundamental pillar of preventive medicine and the basis for possible control and/or eradication of disease plans, especially infectious diseases. Internal parasites in production and companion animals continue to be one of the main threats to animal health and welfare with important economic implications, in addition to its impact on global public health. Its control has been based almost exclusively on chemotherapeutic drugs, which for several years have lost their efficacy and there are clear examples of parasitic resistance to them. Even so, few commercial examples of gastrointestinal parasite vaccines are commercially available for use in the practice of Veterinary Medicine. This review describes some commercial examples of gastrointestinal antiparasitic vaccines for their formulation in veterinary medical practice seen from the perspective of “the generations of vaccines'' and supported by experimental clinical studies of promising antigens for the prophylactic control of certain gastrointestinal parasitic agents of interest in public health mainly. To date, it is available with certain commercial limitations in some European and Australian countries Barbervax® and in South American countries Providean® Hidatil EG95 for use in ruminants for the control of Haemonchus contortus and Echinococcus granulosus, respectively; in some countries in America and Africa, Cysvax™ is available for the control of Taenia solium in pigs and in the world with very few limitations, a series of commercial vaccines for the control of coccidosis (Eimeria spp.) in poultry industry: turkeys, broilers and laying hens (e.g., CocciVac®, Immucox®, Paracox®, among others). There is a need to provide this type of vaccine to all countries where these gastrointestinal parasites are endemic and, in this way, provide options for their control. As well as a series of economic investments is highly necessary to support technical-scientific development around development of new effective and safe biologicals (new generations of vaccines) for the control of the most relevant internal parasites in production and companion animals.
author Jaramillo Hernández, Dumar Alexander
Vargas Borda , Lina Maria
Prieto Prieto, Laura Daniela
author_facet Jaramillo Hernández, Dumar Alexander
Vargas Borda , Lina Maria
Prieto Prieto, Laura Daniela
topicspa_str_mv zoonose
saúde pública
Manejo integrado de parasitas internos
zoonosis
salud pública
Manejo integrado de parásitos internos
topic zoonose
saúde pública
Manejo integrado de parasitas internos
zoonosis
salud pública
Manejo integrado de parásitos internos
Internal parasite management
zoonose
public health
topic_facet zoonose
saúde pública
Manejo integrado de parasitas internos
zoonosis
salud pública
Manejo integrado de parásitos internos
Internal parasite management
zoonose
public health
citationvolume 12
citationissue 2
publisher Universidad de los Llanos
ispartofjournal Revista Sistemas de Producción Agroecológicos
source https://revistas.unillanos.edu.co/index.php/sistemasagroecologicos/article/view/879
language Español
format Article
rights http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
Revista Sistemas de Producción Agroecológicos - 2021
https://creativecommons.org/licenses/by-nc-sa/4.0/
references Loukas A, Good F. Back to the future for antiparasite vaccines?. Expert review of vaccines, 2013;12(1):1-4.
Petavy F, Hormaeche C, Lahmar S, Ouhelli H, Chabalgoity A, Marchal T, Azzouz S, Schreiber F, Alvite G, Sarciron E, Maskell D, Esteves A, Bosquet G. An oral recombinant vaccine in dogs against Echinococcus granulosus, the causative agent of human hydatid disease: a pilot study. PLoS neglected tropical diseases, 2008;2(1):125.
Newton E, Munn A. The development of vaccines against gastrointestinal nematode parasites, particularly Haemonchus contortus. Parasitology today (Personal ed.), 1999;15(3):116–122.
Murray K. Molecular vaccines against animal parasites. Vaccine, 1989;7(4):291–299.
Munn A, Greenwood A, Coadwell J. Vaccination of young lambs by means of a protein fraction extracted from adult Haemonchus contortus. Parasitology, 1987;94(2):385–397.
Morrison I, Tomley F. Development of vaccines for parasitic diseases of animals: Challenges and opportunities. Parasite immunology, 2016;38(12):707–708.
Monahan M, Taylor W, Chapman R, Klei R. Experimental immunization of ponies with Strongylus vulgaris radiation-attenuated larvae or crude soluble somatic extracts from larval or adult stages. The Journal of parasitology, 1994;80(6):911–923.
Meeusen N, Walker J, Peters A, Pastoret P, Jungersen G. Current status of veterinary vaccines. Clinical microbiology reviews, 2007;20(3),489–510.
Meeusen N, Balic A, Bowles V. Cells, cytokines and other molecules associated with rejection of gastrointestinal nematode parasites. Veterinary immunology and immunopathology, 2005;108(1-2):121–125.
McVey S, Shi J. Vaccines in veterinary medicine: a brief review of history and technology. The Veterinary clinics of North America. Small animal practice, 2010;40(3),381–392.
Marciani J. Effects of immunomodulators on the response induced by vaccines against autoimmune diseases. Autoimmunity, 2017;50(7),393–402.
Maizels M, Hewitson P, Smith A. Susceptibility and immunity to helminth parasites. Current opinion in immunology, 2012;24(4):459–466.
Li K, Lan Y, Luo H, Shahzad M, Zhang H, Wang L, Zhang L, Liu D, Liu X, Hao Y, Sizhu S, Li J. Prevalence of three Oesophagostomum spp. from Tibetan Pigs analyzed by Genetic Markers of nad1, cox3 and ITS1. Acta parasitologica, 2017;62(1):90–96.
Rodríguez G, Olivares L. Vacunas parasitarias: un recuento bibliográfico. Revista de Salud Animal, 2019;41(3):08.
Li J. Zheng J, Gong P, Zhang X. Efficacy of Eimeria tenella rhomboid-like protein as a subunit vaccine in protective immunity against homologous challenge. Parasitology research, 2012;110(3):1139–1145.
Krieg M. CpG motifs in bacterial DNA and their immune effects. Annual review of immunology, 2002;20(1):709-760.
Krammer, F. SARS-CoV-2 vaccines in development. Nature, 2020;586(7830):516-527.
Knox P, Smith D. Vaccination against gastrointestinal nematode parasites of ruminants using gut-expressed antigens. Veterinary parasitology, 2001;100(1-2), 21–32
Klei R, French D, Chapman R, McClure R, Dennis A, Taylor W, Hutchinson W. Protection of yearling ponies against Strongylus vulgaris by foalhood vaccination. Equine veterinary journal. Supplement, 1989;(7):2–7.
Klei R. Equine immunity to parasites. The Veterinary clinics of North America. Equine practice, 2000;16(1):69–vi.
Jourdan M, Lamberton L, Fenwick A, Addiss G. Soil-transmitted helminth infections. Lancet. 2018;391(10117):252-265.
Jorge S, Dellagostin A. The development of veterinary vaccines: a review of traditional methods and modern biotechnology approaches. Biotechnology Research and Innovation, 2017;1(1),6–13.
Jaramillo A, Salazar F, Pacheco C, Pinheiro S, Alcantara M. Protective response mediated by immunization with recombinant proteins in a murine model of toxocariasis and canine infection by Toxocara canis. Vaccine, 2022;40(6):912-923.
Jaramillo D, Salazar F, Baquero M, Pinheiro S, Alcantara M. Toxocariasis and Toxocara vaccine: a review. Revista Orinoquia, 2020;24:79-95.
Hotez J, Fenwick A, Savioli L, Molyneux H. Rescuing the bottom billion through control of neglected tropical diseases. Lancet (London, England), 2009;373(9674):1570–1575.
Reinemeyer R, Nielsen K. Parasitism and colic. The Veterinary clinics of North America. Equine practice, 2009;25(2):233–245.
Salazar F, Santiago F, Santos S, Jaramillo A, da Silva B, Alves V, Silveira F, Barrouin M, Cooper J, Pacheco L, Pinheiro C, Alcantara M. Immunogenicity and protection induced by recombinant Toxocara canis proteins in a murine model of toxocariasis. Vaccine, 2020;38(30):4762–4772.
Hein R, Harrison B. Vaccines against veterinary helminths. Veterinary parasitology, 2005;132(3-4):217–222.
Wedrychowicz H. Antiparasitic DNA vaccines in 21st century. Acta Parasitologica, 2015;60(2):179-189.
Zhang W, Zhang Z, Shi B, Li J, You H, Tulson G, Dang X, Song Y, Yimiti T, Wang J, Jones K, McManus P. Vaccination of dogs against Echinococcus granulosus, the cause of cystic hydatid disease in humans. The Journal of infectious diseases, 2006;194(7):966–974.
Xu J, Zhang Y, Tao J. Efficacy of a DNA vaccine carrying Eimeria maxima Gam56 antigen gene against coccidiosis in chickens. The Korean journal of parasitology, 2013;51(2):147–154.
World Health Organization (WHO), Echinococcosis fact sheet, Disponible en: https://www.who.int/news-room/fact-sheets/detail/echinococcosis.2020.
Wallach M, Smith C, Petracca M, Miller M, Eckert J, Braun R. Eimeria maxima gametocyte antigens: potential use in a subunit maternal vaccine against coccidiosis in chickens. Vaccine, 1995;13(4):347–354.
Seib L, Zhao X, Rappuoli R. Developing vaccines in the era of genomics: a decade of reverse vaccinology. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 2012;18(5):109–116.
Vlaminck J, Martinez M, Dewilde S, Moens L, Tilleman K, Deforce D, Urban J, Claerebout E, Vercruysse J, Geldhof P. Immunizing pigs with Ascaris suum haemoglobin increases the inflammatory response in the liver but fails to induce a protective immunity. Parasite immunology,2011;33(4):250–254.
Vetter V, Denizer G, Friedland R, Krishnan J, Shapiro M. Understanding modern-day vaccines: what you need to know. Annals of medicine, 2018;50(2):110–120.
Versteeg L, Almutairi M, Hotez J, Pollet J. Enlisting the mRNA Vaccine Platform to Combat Parasitic Infections. Vaccines, 2019;7(4),122.
Vargas M, Prieto D, Baquero M, Corredor W, Alcantara M, Jaramillo D. Vaccines for gastrointestinal parasites, a pillar of preventive medicine in veterinary practice: Systematic review. Revista de Investigación Agraria y Ambiental, 2022;13(1): 221-251.
Unnikrishnan M, Rappuoli R, Serruto D. Recombinant bacterial vaccines. Current opinion in immunology, 2012;24(3):337–342.
Tyagi R, Joachim A, Ruttkowski B, Rosa A, Martin C, Hallsworth K, Zhang X, Ozersky P, Wilson K, Ranganathan S, Sternberg W, Gasser B, Mitreva M. Cracking the nodule worm code advances knowledge of parasite biology and biotechnology to tackle major diseases of livestock. Biotechnology advances, 2015;33(6Pt1):980–991.
Swiderski E, Klei R, Folsom W, Pourciau S, Chapman A, Chapman R, Moore M, McClure R, Taylor W, Horohov W. Vaccination against Strongylus vulgaris in ponies: comparison of the humoral and cytokine responses of vaccinates and nonvaccinates. Advances in veterinary medicine, 1999;41:389–404.
Sun C, Beilke N, Lanier L. Adaptive immune features of natural killer cells. Nature, 2009;457(7229):557–561.
Song X, Xu L, Yan R, Huang X, Shah A, Li X. The optimal immunization procedure of DNA vaccine pcDNA-TA4-IL-2 of Eimeria tenella and its cross-immunity to Eimeria necatrix and Eimeria acervulina. Veterinary parasitology, 2009;159(1):30–36.
Song H, Yan R, Xu L, Song X, Shah A, Zhu H, Li X. Efficacy of DNA vaccines carrying Eimeria acervulina lactate dehydrogenase antigen gene against coccidiosis. Experimental parasitology, 2010;126(2), 224–231.
Siefker C, Rickard G. Vaccination of calves with Haemonchus placei intestinal homogenate. Veterinary parasitology, 2000;88(3-4),249–260.
Hill E, Fetterer H, Romanowski D, Urban Jr. The effect of immunization of pigs with Ascaris suum cuticle components on the development of resistance to parenteral migration during a challenge infection. Veterinary immunology and immunopathology, 1994;42(2):161–169.
Harrison B, Shakes R, Robinson M, Lawrence B, Heath D, Dempster P, Lightowlers W, Rickard D. Duration of immunity, efficacy and safety in sheep of a recombinant Taenia ovis vaccine formulated with saponin or selected adjuvants. Veterinary immunology and immunopathology, 1999;70(3-4):161–172.
Goldsby A, Kindt J, Osborne A, Kuby J. vaccines. In: Mc Graw Hill,editors. Kuby Immunology, 6th edition, New york: E.Publishing Inc; 2007:475-490.
Babu S, Nutman T. Immune Responses to Helminth Infection. Clinical Immunology, 2019:437-447.
Clem S. Fundamentals of vaccine immunology. Journal of global infectious diseases, 2011;3(1):73–78.
Gauci G, Jayashi M, Gonzalez E, Lackenby J, Lightowlers W. Protection of pigs against Taenia solium cysticercosis by immunization with novel recombinant antigens. Vaccine, 2012;30(26):3824–3828.
Fujiwara T, Zhan B, Mendez S, Loukas A, Bueno L, Wang Y, Plieskatt J, Oksov Y, Lustigman S, Bottazzi E, Hotez P, Bethony M. Reduction of worm fecundity and canine host blood loss mediates protection against hookworm infection elicited by vaccination with recombinant Ac-16. Clinical and vaccine immunology, 2007;14(3):281–287.
Foster N, Berndt A, Lalmanach C, Methner U, Pasquali P, Rychlik I, Velge, P, Zhou X, Barrow P. Emergency and therapeutic vaccination--is stimulating innate immunity an option?. Research in veterinary science, 2012;93(1),7–12.
Emery L, McClure J, Wagland M. Production of vaccines against gastrointestinal nematodes of livestock. Immunology and cell biology, 1993;71(5):463–472.
East J, Berrie A, Fitzgerald J. Oesophagostomum radiatum: successful vaccination of calves with an extract of in vitro cultured larvae. International journal for parasitology, 1988,18(1):125–127.
Dunham P. The application of nucleic acid vaccines in veterinary medicine. Research in veterinary science, 2002;73(1):9–16.
Di Pasquale A, Preiss S, Tavares Da Silva F, Garçon N. Vaccine Adjuvants: from 1920 to 2015 and Beyond. Vaccines, 2015;3(2):320–343.
Dhama K, Mahendran M, Gupta K, Rai A. DNA vaccines and their applications in veterinary practice: current perspectives. Veterinary research communications, 2008;32(5),341-356.
Dalton P, Mulcahy G. Parasite vaccines--a reality?. Veterinary parasitology, 2001;98(1-3):149–167.
Cruz V, Rosado E, Dumonteil E. Desarrollo de vacunas contra parásitos. Revista Ciencia, 2017;68(1):81-85.
Cox C, Coulter R. Adjuvants--a classification and review of their modes of action. Vaccine, 1997;15(3):248–256.
Coban C, Koyama S, Takeshita F, Akira S, Ishii J. Molecular and cellular mechanisms of DNA vaccines. Human vaccines, 2008;4(6):453–456.
Calamante, G. Desarrollo de vacunas de nueva generación Desarrollo de vacunas de nueva generación, 2018. Disponible en: http://ria.inta.gob.ar/contenido/desarrollo-de-vacunas-de-nueva-generacion-para-uso-veterinario?l=es
Chambers A, Graham P, La Ragione M. Challenges in Veterinary Vaccine Development and Immunization. Methods in molecular biology (Clifton, N.J.), 2016;1404:3–35.
Bomford R. Adjuvants for anti-parasite vaccines. Parasitology today (Personal ed.), 1989;5(2):41–46.
Bagnoli F, Baudner B, Mishra P, Bartolini E, Fiaschi L, Mariotti P, Nardi-Dei V, Boucher P, Rappuoli R. Designing the next generation of vaccines for global public health. Omics: a journal of integrative biology, 2011;15(9):545–566.
Bethony M, Cole N, Guo X, Kamhawi S, Lightowlers W, Loukas A, Petri W., Reed S, Valenzuela G, Hotez J. Vaccines to combat the neglected tropical diseases. Immunological reviews, 2011;239(1):237–270.
Bąska P, Wiśniewski M, Krzyżowska M, Długosz E, Zygner W, Górski P, Wędrychowicz H. Molecular cloning and characterisation of in vitro immune response against astacin-like metalloprotease Ace-MTP-2 from Ancylostoma ceylanicum. Experimental parasitology, 2013;133(4):472–482.
Bassetto C, Picharillo É, Newlands F, Smith D, Fernandes S, Siqueira R, Amarante F. Attempts to vaccinate ewes and their lambs against natural infection with Haemonchus contortus in a tropical environment. International journal for parasitology, 2014;44(14):1049–1054.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2021-12-15
date_accessioned 2021-12-15T00:00:00Z
date_available 2021-12-15T00:00:00Z
url https://revistas.unillanos.edu.co/index.php/sistemasagroecologicos/article/view/879
url_doi https://doi.org/10.22579/22484817.879
eissn 2248-4817
doi 10.22579/22484817.879
citationstartpage 74
citationendpage 96
url2_str_mv https://revistas.unillanos.edu.co/index.php/sistemasagroecologicos/article/download/879/945
_version_ 1797159037668687872