Características físicas y composicionales del queso y yogurt elaborados a partir de un concentrado de proteínas de leche parcialmente desmineralizado

El uso de concentrados de proteína de leche (MPC) ha sido estudiado ampliamente; sin embargo, su desmineralización parcial por medio de la diafiltración (DF) y el efecto de este tratamiento sobre su aptitud en la elaboración de productos coagulados no está completamente explorada. Se planteó, entonces, estudiar el proceso de desmineralización de un MPC por medio de varios ciclos de DF y evaluar el efecto de este tratamiento sobre las características composicionales y texturales de productos coagulados enzimáticamente y por acidez. El MPC, obtenido por ultrafiltración, fue diafiltrado en dos ciclos; luego, el MPC fue usado para elaborar un queso fresco, un yogurt batido y uno cuchareable. La aplicación de un ciclo de DF removió el 22,2% de l... Ver más

Guardado en:

0123-4226

2619-2551

24

2021-06-30

Edinson Bejarano-Toro, José Uriel Sepúlveda-Valencia, Eduardo Rodríguez-Sandoval - 2021

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id 65609dd3ca7537a2646316a5c93b3946
record_format ojs
institution UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDECIENCIASAPLICADASYAMBIENTALES/logo.png
country_str Colombia
collection Revista U.D.C.A Actualidad & Divulgación Científica
title Características físicas y composicionales del queso y yogurt elaborados a partir de un concentrado de proteínas de leche parcialmente desmineralizado
spellingShingle Características físicas y composicionales del queso y yogurt elaborados a partir de un concentrado de proteínas de leche parcialmente desmineralizado
Rodríguez-Sandoval, Eduardo
Sepúlveda-Valencia, José Uriel
Bejarano-Toro, Edinson
diafiltration
calcium
coagulation
ultrafiltration
Proteins
Proteins
Ultrafiltration
Diafiltration
Coagulation
Calcium
title_short Características físicas y composicionales del queso y yogurt elaborados a partir de un concentrado de proteínas de leche parcialmente desmineralizado
title_full Características físicas y composicionales del queso y yogurt elaborados a partir de un concentrado de proteínas de leche parcialmente desmineralizado
title_fullStr Características físicas y composicionales del queso y yogurt elaborados a partir de un concentrado de proteínas de leche parcialmente desmineralizado
title_full_unstemmed Características físicas y composicionales del queso y yogurt elaborados a partir de un concentrado de proteínas de leche parcialmente desmineralizado
title_sort características físicas y composicionales del queso y yogurt elaborados a partir de un concentrado de proteínas de leche parcialmente desmineralizado
title_eng Physical and compositional characteristics of cheese and yogurt made from partially demineralized milk protein concentrate
description El uso de concentrados de proteína de leche (MPC) ha sido estudiado ampliamente; sin embargo, su desmineralización parcial por medio de la diafiltración (DF) y el efecto de este tratamiento sobre su aptitud en la elaboración de productos coagulados no está completamente explorada. Se planteó, entonces, estudiar el proceso de desmineralización de un MPC por medio de varios ciclos de DF y evaluar el efecto de este tratamiento sobre las características composicionales y texturales de productos coagulados enzimáticamente y por acidez. El MPC, obtenido por ultrafiltración, fue diafiltrado en dos ciclos; luego, el MPC fue usado para elaborar un queso fresco, un yogurt batido y uno cuchareable. La aplicación de un ciclo de DF removió el 22,2% de las cenizas y 8,12% del calcio, pero no hubo diferencias significativas (P>0,05) con respecto a la aplicación de dos ciclos de DF. El queso elaborado con el MPC, con uno y dos ciclos de DF, fue menos duro y presentó menor resistencia a la masticación que el elaborado con MPC sin DF y el yogurt cuchareable presentó menor elasticidad, debido al menor contenido de sólidos totales y calcio, los cuales, fueron afectados por la DF. La desmineralización parcial aumentó el tiempo de coagulación y favoreció la formación de geles más débiles. La DF alcanzó el máximo de desmineralización de la leche en un solo ciclo.
description_eng The milk protein concentrate (MPC) has been extensively studied; however, the MPC partial demineralization through the diafiltration (DF) and its effect on MPC ability to produce milk coagulate products has not been fully explored; therefore, it was considered studying the MPC demineralization process with DF and evaluate the effect of this treatment on the compositional and textural characteristics of enzymatically and acid-coagulated products. The MPC of ultrafiltration was diafiltered by two cycles, later this MPC was used to make a fresh cheese, a set yogurt and stirred yogurt. The application of a single DF cycle removed 22.2% of the ashes and 8.12% of the MPC calcium, but no statistically significant differences were present (P> 0.05) between the application of two DF cycles. The cheeses with MPC undergone to one cycle and two cycles of DF were less hard and presented less resistance to chewing, and the set yogurt showed lower springiness values due a total solids and calcium content, that was affected by DF. These phenomena increased the coagulation time and the formation of weaker gels. The DF achieved the maximum milk demineralization in a single cycle.
author Rodríguez-Sandoval, Eduardo
Sepúlveda-Valencia, José Uriel
Bejarano-Toro, Edinson
author_facet Rodríguez-Sandoval, Eduardo
Sepúlveda-Valencia, José Uriel
Bejarano-Toro, Edinson
topicspa_str_mv diafiltration
calcium
coagulation
ultrafiltration
Proteins
topic diafiltration
calcium
coagulation
ultrafiltration
Proteins
Proteins
Ultrafiltration
Diafiltration
Coagulation
Calcium
topic_facet diafiltration
calcium
coagulation
ultrafiltration
Proteins
Proteins
Ultrafiltration
Diafiltration
Coagulation
Calcium
citationvolume 24
citationissue 1
citationedition Núm. 1 , Año 2021 :Revista U.D.C.A Actualidad & Divulgación Científica. Enero-Junio
publisher Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
ispartofjournal Revista U.D.C.A Actualidad & Divulgación Científica
source https://revistas.udca.edu.co/index.php/ruadc/article/view/1949
language Inglés
format Article
rights http://creativecommons.org/licenses/by-nc/4.0
Edinson Bejarano-Toro, José Uriel Sepúlveda-Valencia, Eduardo Rodríguez-Sandoval - 2021
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references_eng BANACH, J.; LIN, Z.; LAMSAL, B.P. 2013. Enzymatic modification of milk protein concentrate and characterization of resulting functional properties. LWT-Journal. 54(2):397-403. https://doi.org/10.1016/j.lwt.2013.06.023 2. BRANS, G.; SCHROËN, C.; VAN DER SMAN, R.; BOOM, R. 2004. Membrane fractionation of milk: state of the art and challenges. J. Membrane Science. 243(1-2):263-272. https://doi.org/10.1016/j.memsci.2004.06.029 3. BRUZANTIN, F.; DANIEL, J.; DA SILVA, P.; SPOTO, M. 2016. Physicochemical and sensory characteristics of fat-free goat milk yogurt with added stabilizers and skim milk powder fortification. J. Dairy Science. 99(5):3316-3324. https://doi.org/10.3168/jds.2015-10327 4. CAO, J.; ZHANG, W.; WU, S.; LIU, C.; LI, Y.; LI, H.; ZHANG, L. 2015. Short communication: Effects of nanofiltration and evaporation on the physiochemical properties of milk protein during processing of milk protein concentrate. J. Dairy Science. 98(1):100-105. https://doi.org/10.3168/jds.2014-8619 5. CHANDAN, R.C.; O’RELL, K.R. 2006. Manufacture of Various Types of Yogurt. En: Chandan, R.; White, C.; Kilara, A.; Hui, Y. (eds). Manufacturing Yogurt and Fermented Milks. Blackwell Publishing, Ames, Iowa, USA, p.211-213. https://doi.org/10.1002/9780470277812.ch13 6. CHENCHAIAH, M.; SALUNKE, P.; BISWAS, A.; KOMMINENI, A.; METZGER, L. 2015. Manufacture of modified milk protein concentrate utilizing injection of carbon dioxide. J. Dairy Science. 98(6):3577-3589. https://doi.org/10.3168/jds.2014-8946 7. ESHPARI, H.; JIMENEZ-FLORES, R.; TONG, P.; CORREDING, M. 2015. Partial calcium depletion during membrane filtration affects gelation of reconstituted milk protein concentrates. J. Dairy Science. 98(12):8454-8463. https://doi.org/10.3168/jds.2015-9856 8. ESHPARI, H.; TONG, P.; CORREDIG, M. 2014. Changes in the physical properties, solubility, and heat stability of milk protein concentrates prepared from partially acidified milk. J. Dairy Science. 97(12):7394-7401. https://doi.org/10.3168/jds.2014-8609 9. FERRAGUT, V.; CRUZ, N.; TRUJILLO, A.; GUAMIS, B.; CAPELLAS, M. 2009. Physical characteristics during storage of soy yogurt made from ultra-high pressure homogenized soymilk. J. Food Engineering. 92(1):63-69. https://doi.org/10.1016/j.jfoodeng.2008.10.026 10. FERRER, M.; ALEXANDER, M.; CORREDING, M. 2014. Changes in the physico-chemical properties of casein micelles during ultrafiltration combined with diafiltration. LWT-Food Science and Technology. 59(1):173-180. https://doi.org/10.1016/j.lwt.2014.04.037 11. FOX, P. 2001. Milk proteins as food Ingredients. Int. J. Dairy Technology. 54(2):41-55. https://doi.org/10.1046/j.1471-0307.2001.00014.x 12. FOX, P.; UNIACKE-LOWE, T.; MCSWEENEY, P.; O’MAHONY, J. 2015. Production and Utilization of Milk. En: Fox, P.; Uniacke-Lowe, T.; McSweeney, P.; O’Mahony, J. (eds). Dairy Chemistry and Biochemistry. Ed. Springer International Publishing, Suiza. p.1-3. 13. FRANCOLINO, S.; LOCCI, F.; GHIGLIETTI, R.; LEZZI, R.; MUCCHETTI, G. 2010. Use of milk protein concentrate to standardize milk composition in Italian citric Mozzarella cheese making. LWT-Journal. 43(2):310-314. https://doi.org/10.1016/j.lwt.2009.08.007 14. GAUCHERON, F. 2005. The minerals of milk. Reproduction Nutrition Development. 45(4):473-483. https://doi.org/10.1051/rnd:2005030 15. GAUCHERON, F. 2011. Milk and Dairy Products: A Unique Micronutrient Combination. J. American College of Nutrition. 30:400S-409S. http://dx.doi.org/10.1080/07315724.2011.10719983 16. GAVAZZI-APRIL, C.; BENOIT, S.; DOYEN, A.; BRITTEN, M.; POULIOT, Y. 2018. Preparation of milk protein concentrates by ultrafiltration and continuous diafiltration: effect of process design on overall efficiency. J. Dairy Science. 101:9670-9679. https://doi.org/10.3168/jds.2018-14430 17. GUTIÉRREZ, N.; TRANCOSO, N.; LEAL, M. 2013. Texture profile analysis of Fresh cheese and Chihuahua cheese using miniature cheese models. Tecnociencia Chihuahua. 7(2):65-74. 18. HAQUE, Z.; SHARMA, M. 2002. Influence of cation sequestering and pH on quiescent thermal association of lactoglobulin NB from fresh Cheddar whey: an insight into gelation mechanism. Food Science and Technology Research. 8(4):311-316. https://doi.org/10.3136/fstr.8.311 19. HASHIM, I.; KGALIL, A.; AFIFI, H. 2009. Quality characteristics and consumer acceptance of yogurt fortified with date fiber. J. Dairy Science. 92(11):5403-5407. https://doi.org/10.3168/jds.2009-2234 20. INTERNATIONAL DAIRY FEDERATION, IDF. 1964. Determination of the ash content of processed cheese products. Standard FIL-IDF 27:1964. International Dairy Federation, Brussels, Belgium. 21. INTERNATIONAL DAIRY FEDERATION, IDF. 1986. Cheese and processed cheese product: determination of fat content- gravimetric method (Reference Method). Standard FIL-IDF 5B:1986. International Dairy Federation, Brussels Belgium. 22. INTERNATIONAL DAIRY FEDERATION, IDF. 1993. Milk: determination of nitrogen content. Standard FIL-IDF 20B:1993. International Dairy Federation, Brussels Belgium. 23. INTERNATIONAL DAIRY FEDERATION, IDF. 1996. Milk: Determination of fat content (Röse-Gottlieb gravimetric method). IDF Standard 1D. Standard FIL-IDF 1D: 1996. International Dairy Federation, Brussels Belgium. 24. INTERNATIONAL STANDARD ISO. 2003. ISO: 17294-2: Water quality: Application of inductively coupled plasma mass spectrometry (ICP-MS), Parte 2: Determination of 62 elements. Ginebra, Suiza. 25. KENNETH, S.; DUSTAN, D.; MARTIN, G. 2018. Influence of diafiltration on flux decline during skim milk ultrafiltration. International Dairy Journal. 87:67-74. https://doi.org/10.1016/j.idairyj.2018.07.021 26. KENNETH, S.; MALAVIKA, H.; DALTON, J.; DAVE, E.; GREGORY, J. 2017. Mechanisms of flux decline in skim milk ultrafiltration: A review. J. Membrane Science. 523:144-162. https://doi.org/10.1016/j.memsci.2016.09.036 27. KUMAR, P.; SHARMA, N.; RANJAN, R.; KUMARM, S.; BHAT, Z.; JEONG, D. 2013. Perspective of membrane technology in dairy industry: a review. Asian-Australasian J. Animal Science. 26(9):1347-1358. http://dx.doi.org/10.5713/ajas.2013.13082 28. LAUZIN, A.; POULIOT, Y.; BRITTEN, M. 2020. Understanding the differences in cheese-making properties between reverse osmosis and ultrafiltration concentrates. J. Dairy Science. 103:201-209. https://doi.org/10.3168/jds.2019-16542 29. LIU, D.; LI, J.; JIE, Z.; LIU, X.; WANG, M.; YACINE, H.; REGENSTEIN, J.; ZHOU, P. 2017. Effect of partial acidification on the ultrafiltration and diafiltration of skim milk: Physico-chemical properties of the resulting milk protein concentrates. J. Food Engineering. 212:55-64. https://doi.org/10.1016/j.jfoodeng.2017.05.019 30. LOURENS-HATTINGH, A.; VILJOEN, B. 2001. Yogurt as probiotic carrier food. Internal Dairy J. 11(1-2):1-17. https://doi.org/10.1016/S0958-6946(01)00036-X 31. LU, Y.; MCMAHON, D.; VOLLMER, A. 2017. Investigating rennet coagulation properties of recombined highly concentrated micellar casein concentrate and cream for use in cheese making. J. Dairy Science. 100(2):892-900. https://doi.org/10.3168/jds.2016-11648 32. MAO, X.; TONG, P.; GUALCO, S.; VINK, S. 2012. Effect of NaCl addition during diafiltration on the solubility, hydrophobicity, and disulfide bonds of 80% milk protein concentrate powder. J. Dairy Science. 95(7):3481-3488. https://doi.org/10.3168/jds.2011-4691 33. MARLE, M.; VAN DEN ENDE, D.; DE KRIUF, C.; MELLEMA, J. 1999. Steady-shear viscosity of stirred yogurts with varying ropiness. J. Rheology. 43:1643-1662. https://doi.org/10.1122/1.551065 34. MAUBOIS, J.; MOCQUOT, G.; VASSAL, L. 1969. Procédé de traitement du lait et de sous produits laitiers. Paris, France. Patent 2052121. 35. MINISTERIO DE LA PROTECCIÓN SOCIAL. 2006. Ordinance 616. Bogotá, Colombia. 36. MISTRY, V.; MAUBOIS, J. 2004. Application of Membrane Separation Technology to Cheese Production. In: Cheese: Chemistry, Physics and Microbiology. El Sevier, Wisconsin, USA. p.261-262. 37. NAJGEBAUER-LEJKO, D.; ŻMUDZIŃSKI, D.; PTASZEK, A.; SOCHA, R. 2014. Textural properties of yogurts with green tea and Puerh tea additive. Internal J. Food Science and Technology. 49(4):1149-1158. https://doi.org/10.1111/ijfs.12411 38. OZCAN, T.; HORNE, D.; LUCEY, J. 2011. Effect of increasing the colloidal calcium phosphate of milk on the texture and microstructure of yogurt. J. Dairy Science. 94(11):5278-5288. https://doi.org/10.3168/jds.2010-3932 39. PATEL, H.; PATEL, S. 2014. Milk protein concentrates: manufacturing and applications. Dairy Research Institute: Technical Report. p.2-3. 40. POULIOT, Y. 2008. Membrane processes in dairy technology—From a simple idea to worldwide panacea. Internal Dairy J. 18(7):735-740. https://doi.org/10.1016/j.idairyj.2008.03.005 41. SANDOVAL-CASTILLA, O.; LOBATO-CALLEROS, C.; AGUIRRE-MANDUJANO, E.; VERNON-CARTER, E. 2004. Microstructure and texture of yogurt as influenced by fat replacers. Internal Dairy J. 14(2):151-159. https://doi.org/10.1016/S0958-6946(03)00166-3 42. SANDRA, S.; CORREDING, M. 2013. Rennet induced gelation of reconstituted milk protein concentrates: The role of calcium and soluble proteins during reconstitution. Internal Dairy J. 29(2):68-74. https://doi.org/10.1016/j.idairyj.2012.10.011 43. SCHULZ-COLLINS, D.; SENGE, B. 2004. Acid and Acid/Rennet-curd Cheeses Part A: Quark, Cream Cheese and Related Varieties. In: Fox, P.; McSweeney, P.; Cogan, T.; Guinee, T. Cheese: Chemistry, Physics and Microbiology. Elservier (Wisconsin, USA). p.303-304. 44. SERRA, M.; TRUJILLO, B.; GUAMIS, B.; FERRAGUT, V. 2009. Evaluation of physical properties during storage of set and stirred yogurts made from ultra-high-pressure homogenization-treated milk. Food Hydrocolloids. 23(1):82-91. https://doi.org/10.1016/j.foodhyd.2007.11.015 45. SINGH, H. 2007. Interactions of milk proteins during the manufacture of milk powders. Le Lait. 87(4-5):413-423. 46. SUPAVITITPATANA, P.; WIRJANTORO, T.; APICHARTSRANGKOON, A.; RAVIYAN, P. 2008. Addition of gelatin enhanced gelation of corn–milk yogurt. Food Chemistry. 106(1):211-216. https://doi.org/10.1016/j.foodchem.2007.05.058 47. SVANBORG, S.; JOHANSEN, A.; ABRAHAMSEN, R.; SKEIE, S. 2015. The composition and functional properties of whey protein concentrates produced from buttermilk are comparable with those of whey protein concentrates produced from skimmed milk. J. Dairy Science. 98(9):5829-5840. https://doi.org/10.3168/jds.2014-9039
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2021-06-30
date_accessioned 2021-06-30T00:00:00Z
date_available 2021-06-30T00:00:00Z
url https://revistas.udca.edu.co/index.php/ruadc/article/view/1949
url_doi https://doi.org/10.31910/rudca.v24.n1.2021.1949
issn 0123-4226
eissn 2619-2551
doi 10.31910/rudca.v24.n1.2021.1949
url4_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/download/1949/2183
url2_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/download/1949/2184
_version_ 1797159830075473920
spelling Características físicas y composicionales del queso y yogurt elaborados a partir de un concentrado de proteínas de leche parcialmente desmineralizado
diafiltration
Núm. 1 , Año 2021 :Revista U.D.C.A Actualidad & Divulgación Científica. Enero-Junio
1
24
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
calcium
coagulation
ultrafiltration
Proteins
Rodríguez-Sandoval, Eduardo
Sepúlveda-Valencia, José Uriel
Bejarano-Toro, Edinson
Revista U.D.C.A Actualidad & Divulgación Científica
El uso de concentrados de proteína de leche (MPC) ha sido estudiado ampliamente; sin embargo, su desmineralización parcial por medio de la diafiltración (DF) y el efecto de este tratamiento sobre su aptitud en la elaboración de productos coagulados no está completamente explorada. Se planteó, entonces, estudiar el proceso de desmineralización de un MPC por medio de varios ciclos de DF y evaluar el efecto de este tratamiento sobre las características composicionales y texturales de productos coagulados enzimáticamente y por acidez. El MPC, obtenido por ultrafiltración, fue diafiltrado en dos ciclos; luego, el MPC fue usado para elaborar un queso fresco, un yogurt batido y uno cuchareable. La aplicación de un ciclo de DF removió el 22,2% de las cenizas y 8,12% del calcio, pero no hubo diferencias significativas (P>0,05) con respecto a la aplicación de dos ciclos de DF. El queso elaborado con el MPC, con uno y dos ciclos de DF, fue menos duro y presentó menor resistencia a la masticación que el elaborado con MPC sin DF y el yogurt cuchareable presentó menor elasticidad, debido al menor contenido de sólidos totales y calcio, los cuales, fueron afectados por la DF. La desmineralización parcial aumentó el tiempo de coagulación y favoreció la formación de geles más débiles. La DF alcanzó el máximo de desmineralización de la leche en un solo ciclo.
Artículo de revista
info:eu-repo/semantics/article
http://creativecommons.org/licenses/by-nc/4.0
Edinson Bejarano-Toro, José Uriel Sepúlveda-Valencia, Eduardo Rodríguez-Sandoval - 2021
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
BANACH, J.; LIN, Z.; LAMSAL, B.P. 2013. Enzymatic modification of milk protein concentrate and characterization of resulting functional properties. LWT-Journal. 54(2):397-403. https://doi.org/10.1016/j.lwt.2013.06.023 2. BRANS, G.; SCHROËN, C.; VAN DER SMAN, R.; BOOM, R. 2004. Membrane fractionation of milk: state of the art and challenges. J. Membrane Science. 243(1-2):263-272. https://doi.org/10.1016/j.memsci.2004.06.029 3. BRUZANTIN, F.; DANIEL, J.; DA SILVA, P.; SPOTO, M. 2016. Physicochemical and sensory characteristics of fat-free goat milk yogurt with added stabilizers and skim milk powder fortification. J. Dairy Science. 99(5):3316-3324. https://doi.org/10.3168/jds.2015-10327 4. CAO, J.; ZHANG, W.; WU, S.; LIU, C.; LI, Y.; LI, H.; ZHANG, L. 2015. Short communication: Effects of nanofiltration and evaporation on the physiochemical properties of milk protein during processing of milk protein concentrate. J. Dairy Science. 98(1):100-105. https://doi.org/10.3168/jds.2014-8619 5. CHANDAN, R.C.; O’RELL, K.R. 2006. Manufacture of Various Types of Yogurt. En: Chandan, R.; White, C.; Kilara, A.; Hui, Y. (eds). Manufacturing Yogurt and Fermented Milks. Blackwell Publishing, Ames, Iowa, USA, p.211-213. https://doi.org/10.1002/9780470277812.ch13 6. CHENCHAIAH, M.; SALUNKE, P.; BISWAS, A.; KOMMINENI, A.; METZGER, L. 2015. Manufacture of modified milk protein concentrate utilizing injection of carbon dioxide. J. Dairy Science. 98(6):3577-3589. https://doi.org/10.3168/jds.2014-8946 7. ESHPARI, H.; JIMENEZ-FLORES, R.; TONG, P.; CORREDING, M. 2015. Partial calcium depletion during membrane filtration affects gelation of reconstituted milk protein concentrates. J. Dairy Science. 98(12):8454-8463. https://doi.org/10.3168/jds.2015-9856 8. ESHPARI, H.; TONG, P.; CORREDIG, M. 2014. Changes in the physical properties, solubility, and heat stability of milk protein concentrates prepared from partially acidified milk. J. Dairy Science. 97(12):7394-7401. https://doi.org/10.3168/jds.2014-8609 9. FERRAGUT, V.; CRUZ, N.; TRUJILLO, A.; GUAMIS, B.; CAPELLAS, M. 2009. Physical characteristics during storage of soy yogurt made from ultra-high pressure homogenized soymilk. J. Food Engineering. 92(1):63-69. https://doi.org/10.1016/j.jfoodeng.2008.10.026 10. FERRER, M.; ALEXANDER, M.; CORREDING, M. 2014. Changes in the physico-chemical properties of casein micelles during ultrafiltration combined with diafiltration. LWT-Food Science and Technology. 59(1):173-180. https://doi.org/10.1016/j.lwt.2014.04.037 11. FOX, P. 2001. Milk proteins as food Ingredients. Int. J. Dairy Technology. 54(2):41-55. https://doi.org/10.1046/j.1471-0307.2001.00014.x 12. FOX, P.; UNIACKE-LOWE, T.; MCSWEENEY, P.; O’MAHONY, J. 2015. Production and Utilization of Milk. En: Fox, P.; Uniacke-Lowe, T.; McSweeney, P.; O’Mahony, J. (eds). Dairy Chemistry and Biochemistry. Ed. Springer International Publishing, Suiza. p.1-3. 13. FRANCOLINO, S.; LOCCI, F.; GHIGLIETTI, R.; LEZZI, R.; MUCCHETTI, G. 2010. Use of milk protein concentrate to standardize milk composition in Italian citric Mozzarella cheese making. LWT-Journal. 43(2):310-314. https://doi.org/10.1016/j.lwt.2009.08.007 14. GAUCHERON, F. 2005. The minerals of milk. Reproduction Nutrition Development. 45(4):473-483. https://doi.org/10.1051/rnd:2005030 15. GAUCHERON, F. 2011. Milk and Dairy Products: A Unique Micronutrient Combination. J. American College of Nutrition. 30:400S-409S. http://dx.doi.org/10.1080/07315724.2011.10719983 16. GAVAZZI-APRIL, C.; BENOIT, S.; DOYEN, A.; BRITTEN, M.; POULIOT, Y. 2018. Preparation of milk protein concentrates by ultrafiltration and continuous diafiltration: effect of process design on overall efficiency. J. Dairy Science. 101:9670-9679. https://doi.org/10.3168/jds.2018-14430 17. GUTIÉRREZ, N.; TRANCOSO, N.; LEAL, M. 2013. Texture profile analysis of Fresh cheese and Chihuahua cheese using miniature cheese models. Tecnociencia Chihuahua. 7(2):65-74. 18. HAQUE, Z.; SHARMA, M. 2002. Influence of cation sequestering and pH on quiescent thermal association of lactoglobulin NB from fresh Cheddar whey: an insight into gelation mechanism. Food Science and Technology Research. 8(4):311-316. https://doi.org/10.3136/fstr.8.311 19. HASHIM, I.; KGALIL, A.; AFIFI, H. 2009. Quality characteristics and consumer acceptance of yogurt fortified with date fiber. J. Dairy Science. 92(11):5403-5407. https://doi.org/10.3168/jds.2009-2234 20. INTERNATIONAL DAIRY FEDERATION, IDF. 1964. Determination of the ash content of processed cheese products. Standard FIL-IDF 27:1964. International Dairy Federation, Brussels, Belgium. 21. INTERNATIONAL DAIRY FEDERATION, IDF. 1986. Cheese and processed cheese product: determination of fat content- gravimetric method (Reference Method). Standard FIL-IDF 5B:1986. International Dairy Federation, Brussels Belgium. 22. INTERNATIONAL DAIRY FEDERATION, IDF. 1993. Milk: determination of nitrogen content. Standard FIL-IDF 20B:1993. International Dairy Federation, Brussels Belgium. 23. INTERNATIONAL DAIRY FEDERATION, IDF. 1996. Milk: Determination of fat content (Röse-Gottlieb gravimetric method). IDF Standard 1D. Standard FIL-IDF 1D: 1996. International Dairy Federation, Brussels Belgium. 24. INTERNATIONAL STANDARD ISO. 2003. ISO: 17294-2: Water quality: Application of inductively coupled plasma mass spectrometry (ICP-MS), Parte 2: Determination of 62 elements. Ginebra, Suiza. 25. KENNETH, S.; DUSTAN, D.; MARTIN, G. 2018. Influence of diafiltration on flux decline during skim milk ultrafiltration. International Dairy Journal. 87:67-74. https://doi.org/10.1016/j.idairyj.2018.07.021 26. KENNETH, S.; MALAVIKA, H.; DALTON, J.; DAVE, E.; GREGORY, J. 2017. Mechanisms of flux decline in skim milk ultrafiltration: A review. J. Membrane Science. 523:144-162. https://doi.org/10.1016/j.memsci.2016.09.036 27. KUMAR, P.; SHARMA, N.; RANJAN, R.; KUMARM, S.; BHAT, Z.; JEONG, D. 2013. Perspective of membrane technology in dairy industry: a review. Asian-Australasian J. Animal Science. 26(9):1347-1358. http://dx.doi.org/10.5713/ajas.2013.13082 28. LAUZIN, A.; POULIOT, Y.; BRITTEN, M. 2020. Understanding the differences in cheese-making properties between reverse osmosis and ultrafiltration concentrates. J. Dairy Science. 103:201-209. https://doi.org/10.3168/jds.2019-16542 29. LIU, D.; LI, J.; JIE, Z.; LIU, X.; WANG, M.; YACINE, H.; REGENSTEIN, J.; ZHOU, P. 2017. Effect of partial acidification on the ultrafiltration and diafiltration of skim milk: Physico-chemical properties of the resulting milk protein concentrates. J. Food Engineering. 212:55-64. https://doi.org/10.1016/j.jfoodeng.2017.05.019 30. LOURENS-HATTINGH, A.; VILJOEN, B. 2001. Yogurt as probiotic carrier food. Internal Dairy J. 11(1-2):1-17. https://doi.org/10.1016/S0958-6946(01)00036-X 31. LU, Y.; MCMAHON, D.; VOLLMER, A. 2017. Investigating rennet coagulation properties of recombined highly concentrated micellar casein concentrate and cream for use in cheese making. J. Dairy Science. 100(2):892-900. https://doi.org/10.3168/jds.2016-11648 32. MAO, X.; TONG, P.; GUALCO, S.; VINK, S. 2012. Effect of NaCl addition during diafiltration on the solubility, hydrophobicity, and disulfide bonds of 80% milk protein concentrate powder. J. Dairy Science. 95(7):3481-3488. https://doi.org/10.3168/jds.2011-4691 33. MARLE, M.; VAN DEN ENDE, D.; DE KRIUF, C.; MELLEMA, J. 1999. Steady-shear viscosity of stirred yogurts with varying ropiness. J. Rheology. 43:1643-1662. https://doi.org/10.1122/1.551065 34. MAUBOIS, J.; MOCQUOT, G.; VASSAL, L. 1969. Procédé de traitement du lait et de sous produits laitiers. Paris, France. Patent 2052121. 35. MINISTERIO DE LA PROTECCIÓN SOCIAL. 2006. Ordinance 616. Bogotá, Colombia. 36. MISTRY, V.; MAUBOIS, J. 2004. Application of Membrane Separation Technology to Cheese Production. In: Cheese: Chemistry, Physics and Microbiology. El Sevier, Wisconsin, USA. p.261-262. 37. NAJGEBAUER-LEJKO, D.; ŻMUDZIŃSKI, D.; PTASZEK, A.; SOCHA, R. 2014. Textural properties of yogurts with green tea and Puerh tea additive. Internal J. Food Science and Technology. 49(4):1149-1158. https://doi.org/10.1111/ijfs.12411 38. OZCAN, T.; HORNE, D.; LUCEY, J. 2011. Effect of increasing the colloidal calcium phosphate of milk on the texture and microstructure of yogurt. J. Dairy Science. 94(11):5278-5288. https://doi.org/10.3168/jds.2010-3932 39. PATEL, H.; PATEL, S. 2014. Milk protein concentrates: manufacturing and applications. Dairy Research Institute: Technical Report. p.2-3. 40. POULIOT, Y. 2008. Membrane processes in dairy technology—From a simple idea to worldwide panacea. Internal Dairy J. 18(7):735-740. https://doi.org/10.1016/j.idairyj.2008.03.005 41. SANDOVAL-CASTILLA, O.; LOBATO-CALLEROS, C.; AGUIRRE-MANDUJANO, E.; VERNON-CARTER, E. 2004. Microstructure and texture of yogurt as influenced by fat replacers. Internal Dairy J. 14(2):151-159. https://doi.org/10.1016/S0958-6946(03)00166-3 42. SANDRA, S.; CORREDING, M. 2013. Rennet induced gelation of reconstituted milk protein concentrates: The role of calcium and soluble proteins during reconstitution. Internal Dairy J. 29(2):68-74. https://doi.org/10.1016/j.idairyj.2012.10.011 43. SCHULZ-COLLINS, D.; SENGE, B. 2004. Acid and Acid/Rennet-curd Cheeses Part A: Quark, Cream Cheese and Related Varieties. In: Fox, P.; McSweeney, P.; Cogan, T.; Guinee, T. Cheese: Chemistry, Physics and Microbiology. Elservier (Wisconsin, USA). p.303-304. 44. SERRA, M.; TRUJILLO, B.; GUAMIS, B.; FERRAGUT, V. 2009. Evaluation of physical properties during storage of set and stirred yogurts made from ultra-high-pressure homogenization-treated milk. Food Hydrocolloids. 23(1):82-91. https://doi.org/10.1016/j.foodhyd.2007.11.015 45. SINGH, H. 2007. Interactions of milk proteins during the manufacture of milk powders. Le Lait. 87(4-5):413-423. 46. SUPAVITITPATANA, P.; WIRJANTORO, T.; APICHARTSRANGKOON, A.; RAVIYAN, P. 2008. Addition of gelatin enhanced gelation of corn–milk yogurt. Food Chemistry. 106(1):211-216. https://doi.org/10.1016/j.foodchem.2007.05.058 47. SVANBORG, S.; JOHANSEN, A.; ABRAHAMSEN, R.; SKEIE, S. 2015. The composition and functional properties of whey protein concentrates produced from buttermilk are comparable with those of whey protein concentrates produced from skimmed milk. J. Dairy Science. 98(9):5829-5840. https://doi.org/10.3168/jds.2014-9039
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_1843
https://revistas.udca.edu.co/index.php/ruadc/article/view/1949
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Inglés
application/xml
Publication
Journal article
The milk protein concentrate (MPC) has been extensively studied; however, the MPC partial demineralization through the diafiltration (DF) and its effect on MPC ability to produce milk coagulate products has not been fully explored; therefore, it was considered studying the MPC demineralization process with DF and evaluate the effect of this treatment on the compositional and textural characteristics of enzymatically and acid-coagulated products. The MPC of ultrafiltration was diafiltered by two cycles, later this MPC was used to make a fresh cheese, a set yogurt and stirred yogurt. The application of a single DF cycle removed 22.2% of the ashes and 8.12% of the MPC calcium, but no statistically significant differences were present (P> 0.05) between the application of two DF cycles. The cheeses with MPC undergone to one cycle and two cycles of DF were less hard and presented less resistance to chewing, and the set yogurt showed lower springiness values due a total solids and calcium content, that was affected by DF. These phenomena increased the coagulation time and the formation of weaker gels. The DF achieved the maximum milk demineralization in a single cycle.
Proteins
application/pdf
Physical and compositional characteristics of cheese and yogurt made from partially demineralized milk protein concentrate
Ultrafiltration
Diafiltration
Coagulation
Calcium
2619-2551
2021-06-30T00:00:00Z
10.31910/rudca.v24.n1.2021.1949
https://revistas.udca.edu.co/index.php/ruadc/article/download/1949/2183
2021-06-30T00:00:00Z
2021-06-30
0123-4226
https://doi.org/10.31910/rudca.v24.n1.2021.1949
https://revistas.udca.edu.co/index.php/ruadc/article/download/1949/2184