Ciencias sociales y sostenibilidad: tecnologías de investigación social aplicadas a lo urbano y lo rural

Las tecnologías de investigación social son un conjunto de aplicaciones y modelos formales que posibilitan el abordaje de problemas sociales mediante métodos cuantitativos y cualitativos no necesariamente estadísticos, un gran campo iconológico de explicaciones visuales (Tufte, 1997), perspectivas transdisciplinares de conocimiento y ambientes de trabajo formal libres de disciplina. Este conjunto de aplicaciones presentan diversos retos y alternativas a los modelos mecánicos, estadísticos e interpretativos en estado puro de las ciencias sociales clásicas. El punto de partida de este trabajo enfatiza en la búsqueda de la sostenibilidad ecosistémica en escenarios urbanos y rurales y su investigación interdisciplinar, a propósito del impacto d... Ver más

Guardado en:

0123-4471

2462-9782

20

2018-01-01

61

81

http://purl.org/coar/access_right/c_abf2

info:eu-repo/semantics/openAccess

Revista de Antropología y Sociología: Virajes - 2018

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

id 632241456008e41ade670ce4b6c184de
record_format ojs
spelling Ciencias sociales y sostenibilidad: tecnologías de investigación social aplicadas a lo urbano y lo rural
Kim, J., Lerch, F. and Simon, H.A. (1995). Internal representation and rule development in object-oriented design. ACM Transactions on Computer-Human Interaction, 2 (4), 357-390.
Newell, A. (1990). Unified Theories of Cognition. Cambridge, USA: Harvard University Press.
Murcott, A. (Ed.). (1983). The Sociology of Food and Eating: Essays on the Sociological Significance of Food. Aldershot, England: Gower.
Moss, S. and Edmonds, B. (2005). Sociology and Simulation: Statistical and Qualitative Cross-Validation. AJS, 110 (4), 1095-1131.
LeBaron, B., Arthur, W.B. and Palmer, R. (1999). Time Series Properties of an Artificial Stock Market. Journal of Economic Dynamics and Control, 23, 1487-1516.
LeBaron, B. (2002). Short Memory Traders and Their Impact on Group Learning in Financial Markets. Proceedings of the U.S. National Academy of Sciences, 99, 7201-7206.
Lansing, J.S. et al. (2017). Adaptive self-organization of Bali’s ancient rice terraces. Proceedings of the National Academy of Sciences, 114 (25), 6504-6509.
Lansing, J.S. (2006). Perfect Order: Recognizing Complexity in Bali. New Jersey, USA: Princeton University Press.
Klüver, J. (1996). Simulations of Self Organizing Social Systems. En F. Faulbaum and W. Bandilla (Ed.), SoftStat 95. Advances in Statistical Software (pp. 425-432). Stuttgart, Germany: Lucius.
John, B.E., Vera, A.H. and Newell, A. (1994). Toward real-time GOMS: A model of expert behavior in a highly interactive task. Behavior and Information Technology, 13, 255-267.
Northrop, R.B. and Connor, A.N. (2013). Ecological Sustainability. Understanding Complex Issues. Boca Raton, USA: CRC Press, Taylor & Francis Group.
ICSU. (2016). A Draft Framework for Understanding SDG Interactions. Recuperado de https://icsu.org/cms/2017/05/SDG-interactions-working-paper.pdf.
Holland, J. (1995). Hidden Order: How Adaptation Builds Complexity. Reading, England: Addison-Wesley.
Higgins, A.J. et al. (2010). Applying operations research to agricultural value chain to achieve a balance in efficiency and resilience. Journal of the Operations Research Society, 61, 964-973.
Harris, M. (1985). Good to Eat: Riddles of Food and Culture. New York, USA: Simon & Schuster.
Gilbert, N., Ahrweiler, P. and Pyka, A. (Ed.). (2014). Simulating Knowledge Dynamics in Innovation Networks. Berlin, Germany: Springer-Verlag.
Gilbert, N., Ahrweiler, P. and Pyka, A. (2010). The SKIN (Simulating Knowledge Dynamics in Innovation Networks) model. Mainz, Germany: Johannes Gutenberg University Mainz, University of Hohenheim.
Gilbert, N. and Troitzsch, K.G. (2005). Simulation for the Social Scientist. Buckingham, United Kingdom: Open University Press.
Frankhauser, P. (2015). From Fractal Urban Pattern Analysis to Fractal Urban Planning Concepts. En M. Helbich, J.J. Arsanjani and M. Leitner (Ed.), Computational Approaches for Urban Environments (pp. 13-48). Geneva, Switzerland: Springer International Publishing.
Forrester, J. et al. (2014). Modeling Social-Ecological Problems in Coastal Ecosystems: A Case Study. Complexity, 19, 73-82.
Nilsson, M., Griggs, D. and Visbeck, M. (2016). Map the interactions between Sustainable Development Goals. Nature, 534, 320-322.
Pascual, M. and Dunne, J.A. (Ed.). (2006). Ecological Networks: Linking Structure to Dynamics in Food Webs. New York, USA: Oxford University Press.
Egerton, F.N. (2007). Understanding food chains and food webs, 1700-1970. Bulletin of the Ecological Society of America, 88, 50-69.
von Bertalanffy, L. (1976). Teoría general de los sistemas. Fundamentos, desarrollo, aplicaciones. Buenos Aires, Argentina: Fondo de Cultura Económica.
Text
http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:eu-repo/semantics/article
Wilensky, U. and Rand, W. (2015). An Introduction to Agent-Based Modeling. Modeling Natural, Social, and Engineered Complex Systems with NetLogo. Cambridge, USA: The MIT Press.
Wells, J. (2013). Complexity and Sustainability. New York, USA: Routledge.
Tufte, E.R. (1997). Visual Explanations. Images and Quantities, Evidence and Narrative. Cheshire/ Connecticut, USA: Graphics Press.
Pierce, W.D., Cushman, R.A. and Hood, C.E. (1912). The insect enemies of the cotton boll weevil. U.S. Department of Agriculture, Bureau of Entomology Bulletin, 100, 1-99.
Suleiman, R., Troitzsch, K.G. and Gilbert, N. (Ed.). (2000). Tools and Techniques for Social Science Simulation. Heidelberg, Germany: Physica-Verlag.
Sibertin-Blanc, C. et al. (2013). SocLab: A Framework for the Modeling, Simulation and Analysis of Power in Social Organizations. Journal of Artificial Societies and Social Simulation, 16 (4). Recuperado de http://jasss.soc.surrey.ac.uk/16/4/8.html.
Salingaros, N.A. (2005). Principles of Urban Structure. Amsterdam, Netherlands: Techne Press. Schelling, T. (1978). Micromotives and Macrobehavior. New York, USA: Norton.
Reynoso, C. (2013). Etnicidad y redes territoriales: perspectivas de complejidad. En B. Nates (Coord.), La frontera, las fronteras: diálogos transversales en estudios territoriales contemporáneos (pp. 63-90). Riohacha, Colombia: RETEC.
Reynoso, C. (2006). Complejidad y caos: una exploración antropológica. Buenos Aires, Argentina: Editorial SB.
Reynolds, R. and Kobti, Z. (2003). A Multi-Agent Simulation Using Cultural Algorithms: The Effect of Culture on the Resilience of Social Systems. Recuperado de http://ieeexplore.ieee.org/document/1299917/?reload=true.
Reynolds, G.R. (1994). An Introduction to Cultural Algorithms. Recuperado de http://ai.cs.wayne.edu/ai/availablePapersOnLine/IntroToCA.pdf.
Reeves, C.R. (1993). Using genetic algorithms with small populations. En S. Forrest (Ed.), Proceedings of the Fifth International Conference on Genetic Algorithms, University of Illinois at Urbana-Champaign (pp. 92-99). San Mateo, USA: Morgan Kaufmann.
Poincaré, H. (1908). Science et Méthode. Paris, France: Flammarion.
Feng, J. and Chen, Y. (2010). Spatiotemporal evolution of urban form and land use structure in Hangzhou, China: Evidence from fractals. Environment and Planning B: Urban Analytics and City Science, 37, 838-856.
de Vries, B. and Petersen, A. (2009). Conceptualizing sustainable development: An assessment methodology connecting values, knowledge, worldviews and scenarios. Ecological Economics, 68, 1006-1019.
Chen, Y. and Wang, J. (2013). Multifractal characterization of urban form and growth: The case of Beijing. Environment and Planning B: Urban Analytics and City Science, 40, 884-904.
1
https://revistasojs.ucaldas.edu.co/index.php/virajes/article/view/3176
Revista de Antropología y Sociología : Virajes
Universidad de Caldas
application/pdf
Artículo de revista
Núm. 1 , Año 2018 : Enero - Junio
20
https://creativecommons.org/licenses/by/4.0
sostenibilidad
simulación
modelado
sistemas complejos
Luján Villar, Juan David
Las tecnologías de investigación social son un conjunto de aplicaciones y modelos formales que posibilitan el abordaje de problemas sociales mediante métodos cuantitativos y cualitativos no necesariamente estadísticos, un gran campo iconológico de explicaciones visuales (Tufte, 1997), perspectivas transdisciplinares de conocimiento y ambientes de trabajo formal libres de disciplina. Este conjunto de aplicaciones presentan diversos retos y alternativas a los modelos mecánicos, estadísticos e interpretativos en estado puro de las ciencias sociales clásicas. El punto de partida de este trabajo enfatiza en la búsqueda de la sostenibilidad ecosistémica en escenarios urbanos y rurales y su investigación interdisciplinar, a propósito del impacto de las metodologías complejas, sus premisas, aplicaciones de trabajo práctico y conceptualizaciones básicas.
Español
Publication
Revista de Antropología y Sociología: Virajes - 2018
Atmar, W. and Patterson, B.D. (1993). The Measure of Order and Disorder in the Distribution of Species in Fragmented Habitat. Oecologa, 96, 373-382.
Chen, Y. and Feng, J. (2012). Fractal-based exponential distribution of urban density and self-affine fractal forms of cities. Chaos, Solitons & Fractals, 45, 1404-1416.
Chen, S.H. and Yeh, C.H. (2002). On the Emergent Properties of Artificial Stock Markets: The Efficient Market Hypothesis and the Rational Expectations Hypothesis. Journal of Economic Behaviour and Organization, 49, 217-239.
Cartozo, C.C., Garlaschelli, G. and Caldarelli, G. (2006). Graph Theory and Food Webs. En M. Pascual and J.A. Dunne (Ed.), Ecological Networks: Linking Structure to Dynamics in Food Webs (pp. 93-117). New York, USA: Oxford University Press.
Brand, S. (2010). Whole Earth Discipline: Why Dense Cities, Nuclear Power, Transgenic Crops, Restored Wildlands, Radical Science, and Geoengineering are Necessary. New York, USA: Atlantic Books.
Bousquet, F. and Le Page, C. (2004). Multi-agent simulations and ecosystem management: A review. Ecol Modell, 176, 313-332.
Borgatti, S. and Everett, M. (1999). Models of core/periphery structures. Social Networks, 21, 375-395.
Booch, G., Rumbaugh, J. and Jacobson, I. (2005). The Unified Modeling Language User’s Guide. New York, USA: Addison-Wesley.
Bascompte, J. and Jordana, P. (2006). The Structure of Plant-Animal M utualistic Networks. En M. Pascual and J.A. Dunne (Ed.), Ecological Networks: Linking Structure to Dynamics in Food Webs (pp. 143-159). New York, USA: Oxford University Press.
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Batty, M. (2013). The New Science of Cities. Massachusetts, USA: The MIT Press.
Ariza-Villaverde, A.B., Jiménez-Hornero, F.J. and Ravé, E.G.D. (2013). Multifractal analysis of axial maps applied to the study of urban morphology. Comput Environ Urban Systems, 38, 1-10.
Amorim, L.M.E., Barros, M.N.M. and Cruz, D. (2014). Urban texture and space configuration: An essay on integrating socio spatial analytical techniques. Cities, 39, 58-67.
complex systems
Social sciences and sustainability: social research technologies applied to the urban and the rural
Social research technologies are a set of applications and formal models that allow the approach of social problems through quantitative and qualitative methods not necessarily statistical, a large iconological field of visual explanations (Tufte, 1997), transdisciplinary perspectives of knowledge and free from any discipline formal work environments. This set of applications presents different challenges and alternatives to the mechanical, statistical and interpretative models in the pure state of the classical social sciences. The starting point of this work emphasizes the search for ecosystem sustainability in urban and rural settings and its interdisciplinary research regarding the impact of complex methodologies, their premises, applications of practical work and basic conceptualizations.
sustainability
simulation
modeling
Journal article
https://doi.org/10.17151/rasv.2018.20.1.4
10.17151/rasv.2018.20.1.4
61
2018-01-01T00:00:00Z
2462-9782
81
https://revistasojs.ucaldas.edu.co/index.php/virajes/article/download/3176/2929
2018-01-01
2018-01-01T00:00:00Z
0123-4471
institution UNIVERSIDAD DE CALDAS
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDECALDAS/logo.png
country_str Colombia
collection Revista de Antropología y Sociología : Virajes
title Ciencias sociales y sostenibilidad: tecnologías de investigación social aplicadas a lo urbano y lo rural
spellingShingle Ciencias sociales y sostenibilidad: tecnologías de investigación social aplicadas a lo urbano y lo rural
Luján Villar, Juan David
sostenibilidad
simulación
modelado
sistemas complejos
complex systems
sustainability
simulation
modeling
title_short Ciencias sociales y sostenibilidad: tecnologías de investigación social aplicadas a lo urbano y lo rural
title_full Ciencias sociales y sostenibilidad: tecnologías de investigación social aplicadas a lo urbano y lo rural
title_fullStr Ciencias sociales y sostenibilidad: tecnologías de investigación social aplicadas a lo urbano y lo rural
title_full_unstemmed Ciencias sociales y sostenibilidad: tecnologías de investigación social aplicadas a lo urbano y lo rural
title_sort ciencias sociales y sostenibilidad: tecnologías de investigación social aplicadas a lo urbano y lo rural
title_eng Social sciences and sustainability: social research technologies applied to the urban and the rural
description Las tecnologías de investigación social son un conjunto de aplicaciones y modelos formales que posibilitan el abordaje de problemas sociales mediante métodos cuantitativos y cualitativos no necesariamente estadísticos, un gran campo iconológico de explicaciones visuales (Tufte, 1997), perspectivas transdisciplinares de conocimiento y ambientes de trabajo formal libres de disciplina. Este conjunto de aplicaciones presentan diversos retos y alternativas a los modelos mecánicos, estadísticos e interpretativos en estado puro de las ciencias sociales clásicas. El punto de partida de este trabajo enfatiza en la búsqueda de la sostenibilidad ecosistémica en escenarios urbanos y rurales y su investigación interdisciplinar, a propósito del impacto de las metodologías complejas, sus premisas, aplicaciones de trabajo práctico y conceptualizaciones básicas.
description_eng Social research technologies are a set of applications and formal models that allow the approach of social problems through quantitative and qualitative methods not necessarily statistical, a large iconological field of visual explanations (Tufte, 1997), transdisciplinary perspectives of knowledge and free from any discipline formal work environments. This set of applications presents different challenges and alternatives to the mechanical, statistical and interpretative models in the pure state of the classical social sciences. The starting point of this work emphasizes the search for ecosystem sustainability in urban and rural settings and its interdisciplinary research regarding the impact of complex methodologies, their premises, applications of practical work and basic conceptualizations.
author Luján Villar, Juan David
author_facet Luján Villar, Juan David
topicspa_str_mv sostenibilidad
simulación
modelado
sistemas complejos
topic sostenibilidad
simulación
modelado
sistemas complejos
complex systems
sustainability
simulation
modeling
topic_facet sostenibilidad
simulación
modelado
sistemas complejos
complex systems
sustainability
simulation
modeling
citationvolume 20
citationissue 1
citationedition Núm. 1 , Año 2018 : Enero - Junio
publisher Universidad de Caldas
ispartofjournal Revista de Antropología y Sociología : Virajes
source https://revistasojs.ucaldas.edu.co/index.php/virajes/article/view/3176
language Español
format Article
rights http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/4.0
Revista de Antropología y Sociología: Virajes - 2018
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
references Kim, J., Lerch, F. and Simon, H.A. (1995). Internal representation and rule development in object-oriented design. ACM Transactions on Computer-Human Interaction, 2 (4), 357-390.
Newell, A. (1990). Unified Theories of Cognition. Cambridge, USA: Harvard University Press.
Murcott, A. (Ed.). (1983). The Sociology of Food and Eating: Essays on the Sociological Significance of Food. Aldershot, England: Gower.
Moss, S. and Edmonds, B. (2005). Sociology and Simulation: Statistical and Qualitative Cross-Validation. AJS, 110 (4), 1095-1131.
LeBaron, B., Arthur, W.B. and Palmer, R. (1999). Time Series Properties of an Artificial Stock Market. Journal of Economic Dynamics and Control, 23, 1487-1516.
LeBaron, B. (2002). Short Memory Traders and Their Impact on Group Learning in Financial Markets. Proceedings of the U.S. National Academy of Sciences, 99, 7201-7206.
Lansing, J.S. et al. (2017). Adaptive self-organization of Bali’s ancient rice terraces. Proceedings of the National Academy of Sciences, 114 (25), 6504-6509.
Lansing, J.S. (2006). Perfect Order: Recognizing Complexity in Bali. New Jersey, USA: Princeton University Press.
Klüver, J. (1996). Simulations of Self Organizing Social Systems. En F. Faulbaum and W. Bandilla (Ed.), SoftStat 95. Advances in Statistical Software (pp. 425-432). Stuttgart, Germany: Lucius.
John, B.E., Vera, A.H. and Newell, A. (1994). Toward real-time GOMS: A model of expert behavior in a highly interactive task. Behavior and Information Technology, 13, 255-267.
Northrop, R.B. and Connor, A.N. (2013). Ecological Sustainability. Understanding Complex Issues. Boca Raton, USA: CRC Press, Taylor & Francis Group.
ICSU. (2016). A Draft Framework for Understanding SDG Interactions. Recuperado de https://icsu.org/cms/2017/05/SDG-interactions-working-paper.pdf.
Holland, J. (1995). Hidden Order: How Adaptation Builds Complexity. Reading, England: Addison-Wesley.
Higgins, A.J. et al. (2010). Applying operations research to agricultural value chain to achieve a balance in efficiency and resilience. Journal of the Operations Research Society, 61, 964-973.
Harris, M. (1985). Good to Eat: Riddles of Food and Culture. New York, USA: Simon & Schuster.
Gilbert, N., Ahrweiler, P. and Pyka, A. (Ed.). (2014). Simulating Knowledge Dynamics in Innovation Networks. Berlin, Germany: Springer-Verlag.
Gilbert, N., Ahrweiler, P. and Pyka, A. (2010). The SKIN (Simulating Knowledge Dynamics in Innovation Networks) model. Mainz, Germany: Johannes Gutenberg University Mainz, University of Hohenheim.
Gilbert, N. and Troitzsch, K.G. (2005). Simulation for the Social Scientist. Buckingham, United Kingdom: Open University Press.
Frankhauser, P. (2015). From Fractal Urban Pattern Analysis to Fractal Urban Planning Concepts. En M. Helbich, J.J. Arsanjani and M. Leitner (Ed.), Computational Approaches for Urban Environments (pp. 13-48). Geneva, Switzerland: Springer International Publishing.
Forrester, J. et al. (2014). Modeling Social-Ecological Problems in Coastal Ecosystems: A Case Study. Complexity, 19, 73-82.
Nilsson, M., Griggs, D. and Visbeck, M. (2016). Map the interactions between Sustainable Development Goals. Nature, 534, 320-322.
Pascual, M. and Dunne, J.A. (Ed.). (2006). Ecological Networks: Linking Structure to Dynamics in Food Webs. New York, USA: Oxford University Press.
Egerton, F.N. (2007). Understanding food chains and food webs, 1700-1970. Bulletin of the Ecological Society of America, 88, 50-69.
von Bertalanffy, L. (1976). Teoría general de los sistemas. Fundamentos, desarrollo, aplicaciones. Buenos Aires, Argentina: Fondo de Cultura Económica.
Wilensky, U. and Rand, W. (2015). An Introduction to Agent-Based Modeling. Modeling Natural, Social, and Engineered Complex Systems with NetLogo. Cambridge, USA: The MIT Press.
Wells, J. (2013). Complexity and Sustainability. New York, USA: Routledge.
Tufte, E.R. (1997). Visual Explanations. Images and Quantities, Evidence and Narrative. Cheshire/ Connecticut, USA: Graphics Press.
Pierce, W.D., Cushman, R.A. and Hood, C.E. (1912). The insect enemies of the cotton boll weevil. U.S. Department of Agriculture, Bureau of Entomology Bulletin, 100, 1-99.
Suleiman, R., Troitzsch, K.G. and Gilbert, N. (Ed.). (2000). Tools and Techniques for Social Science Simulation. Heidelberg, Germany: Physica-Verlag.
Sibertin-Blanc, C. et al. (2013). SocLab: A Framework for the Modeling, Simulation and Analysis of Power in Social Organizations. Journal of Artificial Societies and Social Simulation, 16 (4). Recuperado de http://jasss.soc.surrey.ac.uk/16/4/8.html.
Salingaros, N.A. (2005). Principles of Urban Structure. Amsterdam, Netherlands: Techne Press. Schelling, T. (1978). Micromotives and Macrobehavior. New York, USA: Norton.
Reynoso, C. (2013). Etnicidad y redes territoriales: perspectivas de complejidad. En B. Nates (Coord.), La frontera, las fronteras: diálogos transversales en estudios territoriales contemporáneos (pp. 63-90). Riohacha, Colombia: RETEC.
Reynoso, C. (2006). Complejidad y caos: una exploración antropológica. Buenos Aires, Argentina: Editorial SB.
Reynolds, R. and Kobti, Z. (2003). A Multi-Agent Simulation Using Cultural Algorithms: The Effect of Culture on the Resilience of Social Systems. Recuperado de http://ieeexplore.ieee.org/document/1299917/?reload=true.
Reynolds, G.R. (1994). An Introduction to Cultural Algorithms. Recuperado de http://ai.cs.wayne.edu/ai/availablePapersOnLine/IntroToCA.pdf.
Reeves, C.R. (1993). Using genetic algorithms with small populations. En S. Forrest (Ed.), Proceedings of the Fifth International Conference on Genetic Algorithms, University of Illinois at Urbana-Champaign (pp. 92-99). San Mateo, USA: Morgan Kaufmann.
Poincaré, H. (1908). Science et Méthode. Paris, France: Flammarion.
Feng, J. and Chen, Y. (2010). Spatiotemporal evolution of urban form and land use structure in Hangzhou, China: Evidence from fractals. Environment and Planning B: Urban Analytics and City Science, 37, 838-856.
de Vries, B. and Petersen, A. (2009). Conceptualizing sustainable development: An assessment methodology connecting values, knowledge, worldviews and scenarios. Ecological Economics, 68, 1006-1019.
Chen, Y. and Wang, J. (2013). Multifractal characterization of urban form and growth: The case of Beijing. Environment and Planning B: Urban Analytics and City Science, 40, 884-904.
Atmar, W. and Patterson, B.D. (1993). The Measure of Order and Disorder in the Distribution of Species in Fragmented Habitat. Oecologa, 96, 373-382.
Chen, Y. and Feng, J. (2012). Fractal-based exponential distribution of urban density and self-affine fractal forms of cities. Chaos, Solitons & Fractals, 45, 1404-1416.
Chen, S.H. and Yeh, C.H. (2002). On the Emergent Properties of Artificial Stock Markets: The Efficient Market Hypothesis and the Rational Expectations Hypothesis. Journal of Economic Behaviour and Organization, 49, 217-239.
Cartozo, C.C., Garlaschelli, G. and Caldarelli, G. (2006). Graph Theory and Food Webs. En M. Pascual and J.A. Dunne (Ed.), Ecological Networks: Linking Structure to Dynamics in Food Webs (pp. 93-117). New York, USA: Oxford University Press.
Brand, S. (2010). Whole Earth Discipline: Why Dense Cities, Nuclear Power, Transgenic Crops, Restored Wildlands, Radical Science, and Geoengineering are Necessary. New York, USA: Atlantic Books.
Bousquet, F. and Le Page, C. (2004). Multi-agent simulations and ecosystem management: A review. Ecol Modell, 176, 313-332.
Borgatti, S. and Everett, M. (1999). Models of core/periphery structures. Social Networks, 21, 375-395.
Booch, G., Rumbaugh, J. and Jacobson, I. (2005). The Unified Modeling Language User’s Guide. New York, USA: Addison-Wesley.
Bascompte, J. and Jordana, P. (2006). The Structure of Plant-Animal M utualistic Networks. En M. Pascual and J.A. Dunne (Ed.), Ecological Networks: Linking Structure to Dynamics in Food Webs (pp. 143-159). New York, USA: Oxford University Press.
Batty, M. (2013). The New Science of Cities. Massachusetts, USA: The MIT Press.
Ariza-Villaverde, A.B., Jiménez-Hornero, F.J. and Ravé, E.G.D. (2013). Multifractal analysis of axial maps applied to the study of urban morphology. Comput Environ Urban Systems, 38, 1-10.
Amorim, L.M.E., Barros, M.N.M. and Cruz, D. (2014). Urban texture and space configuration: An essay on integrating socio spatial analytical techniques. Cities, 39, 58-67.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2018-01-01
date_accessioned 2018-01-01T00:00:00Z
date_available 2018-01-01T00:00:00Z
url https://revistasojs.ucaldas.edu.co/index.php/virajes/article/view/3176
url_doi https://doi.org/10.17151/rasv.2018.20.1.4
issn 0123-4471
eissn 2462-9782
doi 10.17151/rasv.2018.20.1.4
citationstartpage 61
citationendpage 81
url2_str_mv https://revistasojs.ucaldas.edu.co/index.php/virajes/article/download/3176/2929
_version_ 1798191780032675840