Alimentos alternativos en combinación con suplementación enzimática para mejorar la eficiencia y sostenibilidad de la producción porcina y avícola

Para el año 2050, la población mundial alcanzará los 9100 millones de personas, 15 por ciento más que en 2021 (FAO, 2009). Para alimentar a esta población, la producción anual de cereales y carne deberá aumentar 7 y 40%, respectivamente, por encima de los niveles de producción actuales. Por lo tanto, la producción de alimentos para humanos y animales debe optimizar las prácticas sostenibles para garantizar que se satisfagan las demandas de cereales y carne, y al mismo preservar los recursos naturales y ambientales. A medida que aumenta la demanda de alimentos para los seres humanos, los animales de producción que consumen cereales, incluidos el maíz, el trigo y la soya, son reconocidos como competidores potenciales para el suministro y la s... Ver más

Guardado en:

0121-3709

2011-2629

27

2024-03-06

http://purl.org/coar/access_right/c_abf2

info:eu-repo/semantics/openAccess

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Orinoquia - 2024

id 4f5bc103d2e1fdf0672cee3f906e1f93
record_format ojs
institution UNIVERSIDAD DE LOS LLANOS
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDELOSLLANOS/logo.png
country_str Colombia
collection Orinoquia
title Alimentos alternativos en combinación con suplementación enzimática para mejorar la eficiencia y sostenibilidad de la producción porcina y avícola
spellingShingle Alimentos alternativos en combinación con suplementación enzimática para mejorar la eficiencia y sostenibilidad de la producción porcina y avícola
Pérez-Palencia, Jorge Y.
Bolívar-Sierra, Andrés F.
editorial
editorial
editorial
title_short Alimentos alternativos en combinación con suplementación enzimática para mejorar la eficiencia y sostenibilidad de la producción porcina y avícola
title_full Alimentos alternativos en combinación con suplementación enzimática para mejorar la eficiencia y sostenibilidad de la producción porcina y avícola
title_fullStr Alimentos alternativos en combinación con suplementación enzimática para mejorar la eficiencia y sostenibilidad de la producción porcina y avícola
title_full_unstemmed Alimentos alternativos en combinación con suplementación enzimática para mejorar la eficiencia y sostenibilidad de la producción porcina y avícola
title_sort alimentos alternativos en combinación con suplementación enzimática para mejorar la eficiencia y sostenibilidad de la producción porcina y avícola
title_eng Alternative feedstuffs in combination with enzyme supplementation to improve efficiency and sustainability of swine and poultry production
description Para el año 2050, la población mundial alcanzará los 9100 millones de personas, 15 por ciento más que en 2021 (FAO, 2009). Para alimentar a esta población, la producción anual de cereales y carne deberá aumentar 7 y 40%, respectivamente, por encima de los niveles de producción actuales. Por lo tanto, la producción de alimentos para humanos y animales debe optimizar las prácticas sostenibles para garantizar que se satisfagan las demandas de cereales y carne, y al mismo preservar los recursos naturales y ambientales. A medida que aumenta la demanda de alimentos para los seres humanos, los animales de producción que consumen cereales, incluidos el maíz, el trigo y la soya, son reconocidos como competidores potenciales para el suministro y la seguridad alimentaria de los seres humanos (Muscat et al., 2020). En este contexto, las estrategias de alimentación que incorporan alimentos alternativos en las dietas de los animales de producción, como los coproductos de cultivos agroindustriales, reducirán la competencia por los ingredientes de la alimentación humana y contribuirán a la producción de carne animal sostenible. Además, la incorporación de ingredientes alternativos en las dietas del ganado puede reducir los costos de alimentación y aumentar la rentabilidad, particularmente en las industrias porcina y avícola, donde los costos de alimentación representan entre 60 y 70% del costo total de producción (Woyengo et al., 2014).
description_eng By 2050 the global population will reach 9.1 billion, 15 percent higher than 2021 (FAO, 2009). To feed this larger population, annual cereal and meat production will need to rise to 7 and 40%, respectively, above current production levels. Therefore, human food and animal feed production must optimize sustainable practices to ensure cereal and meat animal demands are met while also maintaining natural and environmental resources. As the food demand for humans increases, livestock animals that consume grains including corn, wheat, and soybean are recognized as potential competitors to human food supply and security (Muscat et al., 2020). In this context, feeding strategies that incorporate alternative feedstuffs in livestock diets, such as co-products from agro-industrial crops, will reduce competition for human food ingredients and contribute to sustainable meat animal production. In addition, incorporating alternative ingredients in livestock diets can reduce feed costs and increase profitability, particularly in the swine and poultry industries where the feed costs represent 60 to 70% of the total production cost (Woyengo et al., 2014).
author Pérez-Palencia, Jorge Y.
Bolívar-Sierra, Andrés F.
author_facet Pérez-Palencia, Jorge Y.
Bolívar-Sierra, Andrés F.
topicspa_str_mv editorial
editorial
topic editorial
editorial
editorial
topic_facet editorial
editorial
editorial
citationvolume 27
citationissue 1
publisher Universidad de los Llanos
ispartofjournal Orinoquia
source https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/787
language Español
format Article
rights http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Orinoquia - 2024
https://creativecommons.org/licenses/by-nc-nd/4.0
references Adhikari P, Heo J, Nyachoti C. Standardized total tract digestibility of phosphorus incamelina (Camelina sativa) meal fed to growing pigs without or phytase supplementation. Animal Feed Science and Technology. 2016a;214:104-109. Adhikari P, Heo J, Nyachoti C. High dose of phytase on apparent and standardized total tract digestibility of phosphorus and apparent total tract digestibility of calcium in canola meals from Brassica napus black and Brassica juncea yellow fed to growing pigs. Can. J. Anim. Sci. 2016b;96:121-127. Bougouin A, Appuhamy J, Kebreab E, Dijkstra J, Kwakkel R, France J. Effects of phytase supplementation on phosphorus retention in broilers and layers: a meta-analysis. Poult Sci. Aug. 2014;93(8):1981-92. doi: 10.3382/ps.2013-03820. Brameld J, Parr T. Improving efficiency in meat production. Proc. Nutr. Soc. 2016;75:242-246. doi:10.1017/S0029665116000161. Casas G, Stein H. Effects of microbial xylanase on digestibility of dry matter, organic matter, neutral detergent fiber, and energy and the concentrations of digestible and metabolizable energy in rice coproducts fed to weanling pigs. Journal of Animal Science. 2016;94:1933-1939. Cowieson A, Roos L. Toward optimal value creation through the application of exogenous mono-component protease in the diets of non-ruminants. Anim. Feed Sci. Technol. 2016;221:331-340. doi:10.1016/j. anifeedsci.2016.04.015. Chen H, Zhang I, Park S, Kim W. Impacts of energy feeds and supplemental protease on growth performance, nutrient digestibility, and gut health of pigs from 18 to 45 kg body weight. Anim. Nutr. 2017;3:359-365. doi: 10.1016/j.aninu.2017.09.005. Chen H, Zhang S, Kim S. Effects of supplemental xylanase on health of the small intestine in nursery pigs fed diets with corn distillers' dried grains with solubles. J Anim Sci. Jun. 2020;1:98(6):skaa185. doi: 10.1093/jas/skaa185. Duarte M, Zhou F, Dutra W and Kim S. Dietary supplementation of xylanase and protease on growth performance, digesta viscosity, nutrient digestibility, immune and oxidative stress status, and gut health of newly weaned pigs. Anim Nutr. Dec, 2019;5(4):351-358. doi: 10.1016/j.aninu.2019.04.005. Emiola I, Opapeju F, Slominski B, Nyachoti C. Growth performance and nutrient digestibility in pigs fed wheat distillers dried grains with solubles-based diets supplemented with a multicarbohydrase enzyme. Journal of Animal Science. 2009;87:2315-2322. Food and Agriculture Organization (FAO). 2009. How to Feed the World in 2050. Available online: https://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf. Ghazi S, Rooke H, Galbraith and Bedford M. The potential for the improvement of the nutritive value of soya-bean meal by different proteases in broiler chicks and broiler cockerels. British Poultry Science, 2002;43:70-77. Holloway C, Boyd R, Koehler D, Gould S, Li Q, Patience J. The impact of “super-dosing” phytase in pig diets on growth performance during the nursery and grow-out periods. Transl. Anim. Sci. 2018;3:419-428. doi:10.1093/tas/txy148. Hung Y, Zhu J, Shurson G, Urriola P, Saqui-Salces M. Decreased nutrient digestibility due to viscosity is independent of the amount of dietary fibre fed to growing pigs. Br J Nutr. 2022;Jan 28;127(2):177-187. doi: 10.1017/S0007114521000866. Jang Y, Wilcock P, Boyd R, Lindemann M. Effect of combined xylanase and phytase on growth performance, apparent total tract digestibility, and carcass characteristics in growing pigs fed corn-based diets containing high-fiber coproducts. Journal of Animal Science 2017;95:4005-4017. Jha R, Fouhse J, Tiwari U. Dietary fiber and intestinal health of monogastric animals. Front Vet Sci. 2019;6:1-12. Katapodis P, Christakopoulos P. Enzymic production of feruloyl xylooligosaccharides from corn cobs by a family 10 xylanase from Thermoascus aurantiacus. Food Sci Technol; 2008;41:1239e43. Kiarie E, Romero L, Nyachoti C. The role of added feed enzymes in promoting gut health in swine and poultry. Nutr. Res. Rev. 2013;26:71-88. doi:10.1017/S0954422413000048. Kim H, Nam S, Jeong J, Fang L, Yoo H, Yoo S, Hong J, Son S, Há S, Kim Y. Various levels of copra meal supplementation with β-Mannanase on growth performance, blood profile, nutrient digestibility, pork quality and economic analysis in growing-finishing pigs. Journal of Animal Science and Technology. 2017;59:19. Kim Y, Kim T, Song M, An J, Yun, J, Lee H, Oh J, Lee G, Kim H, Kim B. Effects of different levels of crude protein and protease on nitrogen utilization, nutrient digestibility, and growth performance in growing pigs. J. Anim. Sci. Technol. 2020;62:659-667. doi:10.5187/jast.2020.62.5.659. Lærke H, Arent S, Dalsgaard S, Bach K. Effect of xylanases on ileal viscosity, intestinal fiber modification, and apparent ileal fiber and nutrient digestibility of rye and wheat in growing pigs. Journal of Animal Science. 2015;93:4323-4335. Lee S, Walk C. Meta-analysis: explicit value of mono-component proteases in monogastric diets. Poult. Sci. 2018;97:2078-2085. doi:10.3382/ps/pey042. Lei X, Cheong J, Park J, Kim I. Supplementation of protease, alone and in combination with fructooligosaccharide to low protein diet for finishing pigs. Anim. Sci. J. 2017;88:1987-1993. doi:10.1111/asj.12849. Li Q, Gabler N, Loving C, Gould S, Patience J. A dietary carbohydrase blend improved intestinal barrier function and growth rate in weaned pigs fed higher fiber diets. Journal of Animal Science. 2018;96:5233-5243. Moita V, Duarte M, Kim S. Functional roles of xylanase enhancing intestinal health and growth performance of nursery pigs by reducing the digesta viscosity and modulating the mucosa-associated microbiota in the jejunum, Journal of Animal Science. May 2022;100(5):116, https://doi.org/10.1093/jas/skac116. Molist F, Van Oostruma M, Pérez J, Mateos G, Nyachoti C, Van Der Aar P. Relevance of functional properties of dietary fibre in diets for weanling pigs. Animal Feed Science and Technology. 2014;189:1-10. Moran K, Lange C, Ferket P, Fellner V, Wilcock P, Heugten V. Enzyme supplementation to improve the nutritional value of fibrous feed ingredients in swine diets fed in dry or liquid form. Journal of Animal Science. 2016;94:1031-1040. Muscat A, De Olde E, De Boer I, Ripoll-Bosch R. The battle for biomass: A systematic review of food-feed-fuel competition. Global Food Security. 2020;25:100330. Navarro D, Bruininx E, De Jong L, Stein H. The contribution of digestible and metabolizable energy from high-fiber dietary ingredients is not affected by inclusion rate in mixed diets fed to growing pigs. J Anim Sci. 2018May;4,96(5):1860-1868. doi: 10.1093/jas/sky090. Park S, Lee J, Yang B, Cho J, Kim S, Kang J, Oh S, Park D, Perez-Maldonado R, Cho J, Park I. Dietary protease improves growth performance, nutrient digestibility, and intestinal morphology of weaned pigs. Journal of Animal Science and Technology. 2020a;62(1):21. Park S, Lee A, Cowieson J, Pappenberger G, Woyengo T. Soybean meal allergenic protein degradation and gut health of piglets fed protease-supplemented diets. Journal of Animal Science, 2020b;98:skaa308. Passos A, Park I, Ferket P, Von Heimendahl E, Kim S. Effect of dietary supplementation of xylanase on apparent ileal digestibility of nutrients, viscosity of digesta, and intestinal morphology of growing pigs fed corn and soybean meal based diet. Anim Nutr. 2015 Mar;1(1):19-23. doi: 10.1016/j.aninu.2015.02.006. She Y, Liu Y, Stein H. Effects of graded levels of microbial phytase on apparent total tract digestibility of calcium and phosphorus and standardized total tract digestibility of phosphorus in four sources of canola meal and in soybean meal fed to growing pigs. Journal of Animal Science. 2017;95:2061-2070. Tactacan G, Cho S, Cho J, Kim I. Performance responses, nutrient digestibility, blood characteristics, and measures of gastrointestinal health in weanling pigs fed protease enzyme. Asian-Australas. J. Anim. Sci. 2016;29:998-1003. doi:10.5713/ajas.15.0886. Upadhaya S, Yun H, Kim I. Influence of low or high density corn and soybean meal-based diets and protease supplementation on growth performance, apparent digestibility, blood characteristics and noxious gas emission of finishing pigs. Anim. Feed Sci. Technol. 2016;216:281-287. doi:10.1016/j.anifeedsci.2016.04.003. Urriola P, Cervantes-Pahm E, Stein H. 2013. Fiber in swine nutrition. In: L. I. Chiba, editor, Sustainable swine nutrition. John Wiley & Sons, Inc., Ames, IA. p. 255–276. Wang J, Street N, Park E, Liu J, Ingvarsson P. Evidence for widespread selection in shaping the genomic landscape during speciation of Populus. Mol Ecol. 2020 Mar;29(6):1120-1136. doi: 10.1111/mec.15388. Willamil J, Badiola I, Devillard E, Geraert P, Torrallardona D. Wheat-barley-rye- or corn-fed growing pigs respond differently to dietary supplementation with a carbohydrase complex. Journal of Animal Science. 2012;90:824-832. Woyengo T, Beltranena E, Zijlstra R. Nonruminant Nutrition Symposium: Controlling feed cost by including alternative ingredients into pig diets: a review. J Anim Sci. 2014 Apr;92(4):1293-305. Woyengo T, Patterson R, Levesque C. Nutritive value of multienzyme supplemented cold-pressed camelina cake for pigs. Journal of Animal Science. 2018;96:1119-1129. Yang Y, Fan Y, Cao Y, Guo P, Dong B, Ma Y. Effects of exogenous phytase and xylanase, individually or in combination, and pelleting on nutrient digestibility, available energy content of wheat and performance of growing pigs fed wheat-based diets. Asian-Australas Journal of Animal Science. 2017;30(1):57-63. Zamora V, Figueroa L, Reyna J, Cordero M, Sánchez-Torres and Martínez M. Growth performance, carcass characteristics and plasma urea nitrogen concentration of nursery pigs fed low-protein diets supplemented with glucomannans or protease. J. Appl. Anim. 2011;39:53-56. Zeng Z, Li Q, Tian Q, Xu Y, Piao X. The combination of carbohydrases and phytase to improve nutritional value and non-starch polysaccharides degradation for growing pigs fed diets with or without wheat bran. Animal Feed Science and Technology. 2018;235: 138-146. Zijlstra R, Beltranena E. 2013. Alternative feedstuffs in swine diets. In: L. I. Chiba, editor, Sustainable swine nutrition. John Wiley & Sons, Inc., Ames, IA. p. 229–253. Zuo J, Ling L, Long T, Li L, Lahaye C, Yang and Feng D. Effect of dietary supplementation with protease on growth performance, nutrient digestibility, intestinal morphology, digestive enzymes and gene expression of weaned piglets. Anim. Nutr. 2015;1:276-282. doi:10.1016/j. aninu.2015.10.003
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2024-03-06
date_accessioned 2024-03-06T13:38:33Z
date_available 2024-03-06T13:38:33Z
url https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/787
url_doi https://doi.org/10.22579/20112629.787
issn 0121-3709
eissn 2011-2629
doi 10.22579/20112629.787
url2_str_mv https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/download/787/1308
_version_ 1797159477063974912
spelling Alimentos alternativos en combinación con suplementación enzimática para mejorar la eficiencia y sostenibilidad de la producción porcina y avícola
Universidad de los Llanos
Text
http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:eu-repo/semantics/article
Adhikari P, Heo J, Nyachoti C. Standardized total tract digestibility of phosphorus incamelina (Camelina sativa) meal fed to growing pigs without or phytase supplementation. Animal Feed Science and Technology. 2016a;214:104-109. Adhikari P, Heo J, Nyachoti C. High dose of phytase on apparent and standardized total tract digestibility of phosphorus and apparent total tract digestibility of calcium in canola meals from Brassica napus black and Brassica juncea yellow fed to growing pigs. Can. J. Anim. Sci. 2016b;96:121-127. Bougouin A, Appuhamy J, Kebreab E, Dijkstra J, Kwakkel R, France J. Effects of phytase supplementation on phosphorus retention in broilers and layers: a meta-analysis. Poult Sci. Aug. 2014;93(8):1981-92. doi: 10.3382/ps.2013-03820. Brameld J, Parr T. Improving efficiency in meat production. Proc. Nutr. Soc. 2016;75:242-246. doi:10.1017/S0029665116000161. Casas G, Stein H. Effects of microbial xylanase on digestibility of dry matter, organic matter, neutral detergent fiber, and energy and the concentrations of digestible and metabolizable energy in rice coproducts fed to weanling pigs. Journal of Animal Science. 2016;94:1933-1939. Cowieson A, Roos L. Toward optimal value creation through the application of exogenous mono-component protease in the diets of non-ruminants. Anim. Feed Sci. Technol. 2016;221:331-340. doi:10.1016/j. anifeedsci.2016.04.015. Chen H, Zhang I, Park S, Kim W. Impacts of energy feeds and supplemental protease on growth performance, nutrient digestibility, and gut health of pigs from 18 to 45 kg body weight. Anim. Nutr. 2017;3:359-365. doi: 10.1016/j.aninu.2017.09.005. Chen H, Zhang S, Kim S. Effects of supplemental xylanase on health of the small intestine in nursery pigs fed diets with corn distillers' dried grains with solubles. J Anim Sci. Jun. 2020;1:98(6):skaa185. doi: 10.1093/jas/skaa185. Duarte M, Zhou F, Dutra W and Kim S. Dietary supplementation of xylanase and protease on growth performance, digesta viscosity, nutrient digestibility, immune and oxidative stress status, and gut health of newly weaned pigs. Anim Nutr. Dec, 2019;5(4):351-358. doi: 10.1016/j.aninu.2019.04.005. Emiola I, Opapeju F, Slominski B, Nyachoti C. Growth performance and nutrient digestibility in pigs fed wheat distillers dried grains with solubles-based diets supplemented with a multicarbohydrase enzyme. Journal of Animal Science. 2009;87:2315-2322. Food and Agriculture Organization (FAO). 2009. How to Feed the World in 2050. Available online: https://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf. Ghazi S, Rooke H, Galbraith and Bedford M. The potential for the improvement of the nutritive value of soya-bean meal by different proteases in broiler chicks and broiler cockerels. British Poultry Science, 2002;43:70-77. Holloway C, Boyd R, Koehler D, Gould S, Li Q, Patience J. The impact of “super-dosing” phytase in pig diets on growth performance during the nursery and grow-out periods. Transl. Anim. Sci. 2018;3:419-428. doi:10.1093/tas/txy148. Hung Y, Zhu J, Shurson G, Urriola P, Saqui-Salces M. Decreased nutrient digestibility due to viscosity is independent of the amount of dietary fibre fed to growing pigs. Br J Nutr. 2022;Jan 28;127(2):177-187. doi: 10.1017/S0007114521000866. Jang Y, Wilcock P, Boyd R, Lindemann M. Effect of combined xylanase and phytase on growth performance, apparent total tract digestibility, and carcass characteristics in growing pigs fed corn-based diets containing high-fiber coproducts. Journal of Animal Science 2017;95:4005-4017. Jha R, Fouhse J, Tiwari U. Dietary fiber and intestinal health of monogastric animals. Front Vet Sci. 2019;6:1-12. Katapodis P, Christakopoulos P. Enzymic production of feruloyl xylooligosaccharides from corn cobs by a family 10 xylanase from Thermoascus aurantiacus. Food Sci Technol; 2008;41:1239e43. Kiarie E, Romero L, Nyachoti C. The role of added feed enzymes in promoting gut health in swine and poultry. Nutr. Res. Rev. 2013;26:71-88. doi:10.1017/S0954422413000048. Kim H, Nam S, Jeong J, Fang L, Yoo H, Yoo S, Hong J, Son S, Há S, Kim Y. Various levels of copra meal supplementation with β-Mannanase on growth performance, blood profile, nutrient digestibility, pork quality and economic analysis in growing-finishing pigs. Journal of Animal Science and Technology. 2017;59:19. Kim Y, Kim T, Song M, An J, Yun, J, Lee H, Oh J, Lee G, Kim H, Kim B. Effects of different levels of crude protein and protease on nitrogen utilization, nutrient digestibility, and growth performance in growing pigs. J. Anim. Sci. Technol. 2020;62:659-667. doi:10.5187/jast.2020.62.5.659. Lærke H, Arent S, Dalsgaard S, Bach K. Effect of xylanases on ileal viscosity, intestinal fiber modification, and apparent ileal fiber and nutrient digestibility of rye and wheat in growing pigs. Journal of Animal Science. 2015;93:4323-4335. Lee S, Walk C. Meta-analysis: explicit value of mono-component proteases in monogastric diets. Poult. Sci. 2018;97:2078-2085. doi:10.3382/ps/pey042. Lei X, Cheong J, Park J, Kim I. Supplementation of protease, alone and in combination with fructooligosaccharide to low protein diet for finishing pigs. Anim. Sci. J. 2017;88:1987-1993. doi:10.1111/asj.12849. Li Q, Gabler N, Loving C, Gould S, Patience J. A dietary carbohydrase blend improved intestinal barrier function and growth rate in weaned pigs fed higher fiber diets. Journal of Animal Science. 2018;96:5233-5243. Moita V, Duarte M, Kim S. Functional roles of xylanase enhancing intestinal health and growth performance of nursery pigs by reducing the digesta viscosity and modulating the mucosa-associated microbiota in the jejunum, Journal of Animal Science. May 2022;100(5):116, https://doi.org/10.1093/jas/skac116. Molist F, Van Oostruma M, Pérez J, Mateos G, Nyachoti C, Van Der Aar P. Relevance of functional properties of dietary fibre in diets for weanling pigs. Animal Feed Science and Technology. 2014;189:1-10. Moran K, Lange C, Ferket P, Fellner V, Wilcock P, Heugten V. Enzyme supplementation to improve the nutritional value of fibrous feed ingredients in swine diets fed in dry or liquid form. Journal of Animal Science. 2016;94:1031-1040. Muscat A, De Olde E, De Boer I, Ripoll-Bosch R. The battle for biomass: A systematic review of food-feed-fuel competition. Global Food Security. 2020;25:100330. Navarro D, Bruininx E, De Jong L, Stein H. The contribution of digestible and metabolizable energy from high-fiber dietary ingredients is not affected by inclusion rate in mixed diets fed to growing pigs. J Anim Sci. 2018May;4,96(5):1860-1868. doi: 10.1093/jas/sky090. Park S, Lee J, Yang B, Cho J, Kim S, Kang J, Oh S, Park D, Perez-Maldonado R, Cho J, Park I. Dietary protease improves growth performance, nutrient digestibility, and intestinal morphology of weaned pigs. Journal of Animal Science and Technology. 2020a;62(1):21. Park S, Lee A, Cowieson J, Pappenberger G, Woyengo T. Soybean meal allergenic protein degradation and gut health of piglets fed protease-supplemented diets. Journal of Animal Science, 2020b;98:skaa308. Passos A, Park I, Ferket P, Von Heimendahl E, Kim S. Effect of dietary supplementation of xylanase on apparent ileal digestibility of nutrients, viscosity of digesta, and intestinal morphology of growing pigs fed corn and soybean meal based diet. Anim Nutr. 2015 Mar;1(1):19-23. doi: 10.1016/j.aninu.2015.02.006. She Y, Liu Y, Stein H. Effects of graded levels of microbial phytase on apparent total tract digestibility of calcium and phosphorus and standardized total tract digestibility of phosphorus in four sources of canola meal and in soybean meal fed to growing pigs. Journal of Animal Science. 2017;95:2061-2070. Tactacan G, Cho S, Cho J, Kim I. Performance responses, nutrient digestibility, blood characteristics, and measures of gastrointestinal health in weanling pigs fed protease enzyme. Asian-Australas. J. Anim. Sci. 2016;29:998-1003. doi:10.5713/ajas.15.0886. Upadhaya S, Yun H, Kim I. Influence of low or high density corn and soybean meal-based diets and protease supplementation on growth performance, apparent digestibility, blood characteristics and noxious gas emission of finishing pigs. Anim. Feed Sci. Technol. 2016;216:281-287. doi:10.1016/j.anifeedsci.2016.04.003. Urriola P, Cervantes-Pahm E, Stein H. 2013. Fiber in swine nutrition. In: L. I. Chiba, editor, Sustainable swine nutrition. John Wiley & Sons, Inc., Ames, IA. p. 255–276. Wang J, Street N, Park E, Liu J, Ingvarsson P. Evidence for widespread selection in shaping the genomic landscape during speciation of Populus. Mol Ecol. 2020 Mar;29(6):1120-1136. doi: 10.1111/mec.15388. Willamil J, Badiola I, Devillard E, Geraert P, Torrallardona D. Wheat-barley-rye- or corn-fed growing pigs respond differently to dietary supplementation with a carbohydrase complex. Journal of Animal Science. 2012;90:824-832. Woyengo T, Beltranena E, Zijlstra R. Nonruminant Nutrition Symposium: Controlling feed cost by including alternative ingredients into pig diets: a review. J Anim Sci. 2014 Apr;92(4):1293-305. Woyengo T, Patterson R, Levesque C. Nutritive value of multienzyme supplemented cold-pressed camelina cake for pigs. Journal of Animal Science. 2018;96:1119-1129. Yang Y, Fan Y, Cao Y, Guo P, Dong B, Ma Y. Effects of exogenous phytase and xylanase, individually or in combination, and pelleting on nutrient digestibility, available energy content of wheat and performance of growing pigs fed wheat-based diets. Asian-Australas Journal of Animal Science. 2017;30(1):57-63. Zamora V, Figueroa L, Reyna J, Cordero M, Sánchez-Torres and Martínez M. Growth performance, carcass characteristics and plasma urea nitrogen concentration of nursery pigs fed low-protein diets supplemented with glucomannans or protease. J. Appl. Anim. 2011;39:53-56. Zeng Z, Li Q, Tian Q, Xu Y, Piao X. The combination of carbohydrases and phytase to improve nutritional value and non-starch polysaccharides degradation for growing pigs fed diets with or without wheat bran. Animal Feed Science and Technology. 2018;235: 138-146. Zijlstra R, Beltranena E. 2013. Alternative feedstuffs in swine diets. In: L. I. Chiba, editor, Sustainable swine nutrition. John Wiley & Sons, Inc., Ames, IA. p. 229–253. Zuo J, Ling L, Long T, Li L, Lahaye C, Yang and Feng D. Effect of dietary supplementation with protease on growth performance, nutrient digestibility, intestinal morphology, digestive enzymes and gene expression of weaned piglets. Anim. Nutr. 2015;1:276-282. doi:10.1016/j. aninu.2015.10.003
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Orinoquia - 2024
https://creativecommons.org/licenses/by-nc-nd/4.0
Español
https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/787
Orinoquia
Publication
application/pdf
Artículo de revista
Para el año 2050, la población mundial alcanzará los 9100 millones de personas, 15 por ciento más que en 2021 (FAO, 2009). Para alimentar a esta población, la producción anual de cereales y carne deberá aumentar 7 y 40%, respectivamente, por encima de los niveles de producción actuales. Por lo tanto, la producción de alimentos para humanos y animales debe optimizar las prácticas sostenibles para garantizar que se satisfagan las demandas de cereales y carne, y al mismo preservar los recursos naturales y ambientales. A medida que aumenta la demanda de alimentos para los seres humanos, los animales de producción que consumen cereales, incluidos el maíz, el trigo y la soya, son reconocidos como competidores potenciales para el suministro y la seguridad alimentaria de los seres humanos (Muscat et al., 2020). En este contexto, las estrategias de alimentación que incorporan alimentos alternativos en las dietas de los animales de producción, como los coproductos de cultivos agroindustriales, reducirán la competencia por los ingredientes de la alimentación humana y contribuirán a la producción de carne animal sostenible. Además, la incorporación de ingredientes alternativos en las dietas del ganado puede reducir los costos de alimentación y aumentar la rentabilidad, particularmente en las industrias porcina y avícola, donde los costos de alimentación representan entre 60 y 70% del costo total de producción (Woyengo et al., 2014).
Pérez-Palencia, Jorge Y.
Bolívar-Sierra, Andrés F.
editorial
editorial
27
1
editorial
Journal article
By 2050 the global population will reach 9.1 billion, 15 percent higher than 2021 (FAO, 2009). To feed this larger population, annual cereal and meat production will need to rise to 7 and 40%, respectively, above current production levels. Therefore, human food and animal feed production must optimize sustainable practices to ensure cereal and meat animal demands are met while also maintaining natural and environmental resources. As the food demand for humans increases, livestock animals that consume grains including corn, wheat, and soybean are recognized as potential competitors to human food supply and security (Muscat et al., 2020). In this context, feeding strategies that incorporate alternative feedstuffs in livestock diets, such as co-products from agro-industrial crops, will reduce competition for human food ingredients and contribute to sustainable meat animal production. In addition, incorporating alternative ingredients in livestock diets can reduce feed costs and increase profitability, particularly in the swine and poultry industries where the feed costs represent 60 to 70% of the total production cost (Woyengo et al., 2014).
Alternative feedstuffs in combination with enzyme supplementation to improve efficiency and sustainability of swine and poultry production
2024-03-06
2024-03-06T13:38:33Z
https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/download/787/1308
https://doi.org/10.22579/20112629.787
10.22579/20112629.787
2024-03-06T13:38:33Z
2011-2629
0121-3709