Efecto de la ausencia de suero fetal bovino sobre la morfología y organelas de células fibroblásticas

Los fibroblastos son células constituyentes de los tejidos conectivo. Los fibroblastos gingivales (FGs), células responsables de la síntesis de la matriz extracelular (MEC) en el tejido conectivo gingival, participan en la regulación de los procesos de cicatrización y de reparación de la encía. Debido a su potencial regenerativo, los FGs podrían ser células capaces de contribuir a mejorar los procesos de cicatrización, a nivel local y sistémico e, incluso, ser utilizadas como un modelo celular útil en la comprensión de los aspectos fisiopatológicos de la cavidad oral. El objetivo del presente trabajo fue describir el impacto de la concentración del suero fetal bovino (SFB), en la supervivencia, el crecimiento y la expresión de marcadores ce... Ver más

Guardado en:

0123-4226

2619-2551

23

2020-12-31

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

Victor Simancas-Escorcia, Antonio Díaz-Caballero - 2020

id 4c0472975f25c3c7595c544ed6ae6d44
record_format ojs
spelling Efecto de la ausencia de suero fetal bovino sobre la morfología y organelas de células fibroblásticas
ODIOSO, L.; DOYLE, M.; QUINN, K.; BARTEL, R.; ZIMBER, M.; STEVENS-BURNS, D. 1995. Development and characterization of an in vitro gingival epithelial model. J. Periodontal Research (Reino Unido). 30(3):210-219. https://doi.org/10.1111/j.1600-0765.1995.tb01276.x
BALLABIO, A.; BONIFACINO, J. 2020. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell. Biol. (Reino Unido). 21(2):101-118. https://doi.org/10.1038/s41580-019-0185-4
BARTOLD, P.M.; WALSH, L.J.; NARAYANAN, A.S. 2000. Molecular and cell biology of the gingiva. Periodontology. (Singapur). 24(1):2855. https://doi.org/10.1034/j.1600-0757.2000.2240103.x
BASSO, F.G.; SOARES, D.G.; PANSANI, T.N.; CARDOSO, L.M.; SCHEFFEL D.L.; DE SOUZA COSTA, C.A.; HEBLING J. 2017. Proliferation, migration, and expression of oral‐mucosal‐healing‐related genes by oral fibroblasts receiving low‐level laser therapy after inflammatory cytokines challenge. Lasers in Surgery and Medicine (Estados Unidos). 48(10):1006-1014. https://doi.org/10.1002/lsm.22553
BOOR, P.; FLOEGE, J. 2012. The renal (myo-)fibroblast: a heterogeneous group of cells. Nephrology Dialysis Transplantation (Reino Unido). 27(8):3027-3036. https://doi.org/10.1093/ndt/gfs296
BRUNNER, D. 2010. Serum-free cell culture: the serum-free media interactive online database. ALTEX (Suiza). 27(1):53-62. https://doi.org/10.14573/altex.2010.1.53
BUCUR, M.; DINCA, O.; VLADAN, C.; POPP, C.; NICHITA, L.; CIOPLEA, M.; STÎNGA, P.; MUSTATEA, P.; ZURAC, S.; IONESCU, E. 2018. Variation in expression of inflammation-related signaling molecules with profibrotic and antifibrotic effects in cutaneous and oral mucosa scars. J Immunol Res (Egipto). 2018:5196023. https://doi.org/10.1155/2018/5196023
CARREL, A.; EBELING, A.H. 1926. The fundamental properties of the fibroblast and the macrophage: I. The fibroblast. The J. of Experimental Medicine (Estados Unidos). 44(2):261-284. https://doi.org/10.1084/jem.44.2.261
CHAI, Y.; JIANG, X.; ITO, Y.; BRINGAS, P.; HAN, J.; ROWITCH, D.H.; SORIANO, P.; MCMAHON, A.P.; SUCOV, H.M. 2000. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development (Cambridge). 127(8):1671-1679.
FARZANEH, M.; ZARE, M.; HASSANI, S.-N.; BAHARVAND, H. 2018. Effects of various culture conditions on pluripotent stem cell derivation from chick embryos. J. Cellular Biochemistry (Estados Unidos). 119(8):6325-6336. https://doi.org/10.1002/jcb.26761
GUICCIARDI, M.E.; LEIST, M.; GORES G.J. 2004. Lysosomes in cell death. Oncogene. 23(16):2881-2890. https://doi.org/10.1038/sj.onc.1207512
GÜRDAL, M.; BARUT, Ö.; BAYSAL, K.; DURAK, İ. 2018. Comparison of culture media indicates a role for autologous serum in enhancing phenotypic preservation of rabbit limbal stem cells in explant culture. Cytotechnology (Paises Bajos). 70(2):687-700. https://doi.org/10.1007/s10616-017-0171-7
KOMURO, Y.; MIYASHITA, N.; MORI, T.; MUNEYUKI, E.; SAITOH, T.; KOHDA, D.; SUGITA, Y. 2013. Energetics of the Presequence-Binding Poses in Mitochondrial Protein Import Through Tom20. The J. Physical Chemistry B (Estados Unidos). 117(10):2864-71. https://doi.org/10.1021/jp400113e
LYNN, S.; ARTHUR, S. 1984. Changes in serum influence the fatty acid composition of established cell lines. In Vitro (Estados Unidos). 20(9):732-738. https://doi.org/10.1007/bf02618879
RICHTER, U.; LAHTINEN, T.; MARTTINEN, P.; MYÖHÄNEN, M.; GRECO, D.; CANNINO, G.; JACOBS, H.; LIETZÉN, N.; NYMAN, T.; BATTERSBY, B. 2013. A mitochondrial ribosomal and RNA decay pathway blocks cell proliferation. Current Biology (Estados Unidos). 23(6):535-541. https://doi.org/10.1016/j.cub.2013.02.019
Español
RITCHHART, C.; JOY, A. 2018. Reversal of drug-induced gingival overgrowth by UV-mediated apoptosis of gingival fibroblasts — an in vitro study. Annals of Anatomy - Anatomischer Anzeiger (Alemania). 217:7-11. https://doi.org/10.1016/j.aanat.2018.01.001
SIMANCAS-ESCORCIA, V.; DÍAZ-CABALLERO, A. 2019. Fisiología y usos terapéuticos de los fibroblastos gingivales. Odous Científica (Venezuela). 20(1):41-57. http://servicio.bc.uc.edu.ve/odontologia/revista/vol20n1/art05.pdf
SMITH, P.C.; MARTÍNEZ, C.; MARTÍNEZ, J.; MCCULLOCH, C.A. 2019. Role of fibroblast populations in periodontal wound healing and tissue remodeling. Front Physiol (Suiza). 10:270. https://doi.org/10.3389/fphys.2019.00270
SOARES, A.; SCELZA, M.; SPOLADORE, J.; GALLITO, M.; OLIVEIRA, F.; MORAES, R.; ALVES, G. 2018. Comparison of primary human gingival fibroblasts from an older and a young donor on the evaluation of cytotoxicity of denture adhesives. J. Appl. Oral Sci. (Brasil). 26:e20160594. https://doi.org/10.1590/1678-7757-2016-0594
SVITKINA, T. 2018. The actin cytoskeleton and actin-based motility. Cold Spring Harbor Perspectives in Biology (Estados Unidos). 10(1):a018267. https://doi.org/10.1101/cshperspect.a018267
TAKEUCHI, R.; MATSUMOTO, H.; ARIKAWA, K.; TAGUCHI, C.; NAKAYAMA, R.; NASU, I.; HIRATSUKA, K. 2017. Phenytoin‐induced gingival overgrowth caused by death receptor pathway malfunction. Oral Diseases (Reino Unido). 23(5):653-659. https://doi.org/10.1111/odi.12651
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/redcol/resource_type/ARTREF
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Victor Simancas-Escorcia, Antonio Díaz-Caballero - 2020
https://creativecommons.org/licenses/by-nc-sa/4.0/
Publication
Artículo de revista
Los fibroblastos son células constituyentes de los tejidos conectivo. Los fibroblastos gingivales (FGs), células responsables de la síntesis de la matriz extracelular (MEC) en el tejido conectivo gingival, participan en la regulación de los procesos de cicatrización y de reparación de la encía. Debido a su potencial regenerativo, los FGs podrían ser células capaces de contribuir a mejorar los procesos de cicatrización, a nivel local y sistémico e, incluso, ser utilizadas como un modelo celular útil en la comprensión de los aspectos fisiopatológicos de la cavidad oral. El objetivo del presente trabajo fue describir el impacto de la concentración del suero fetal bovino (SFB), en la supervivencia, el crecimiento y la expresión de marcadores celulares en los FGs. Cultivos celulares de FGs fueron realizados durante 7 días, utilizando medio de cultivo DMEM (Dulbecco’s Modified Eagle’s médium), en ausencia y presencia de 10% de SFB. Análisis morfológicos e inmunohistoquímicos de la actina, mitocondrias, lisosomas y retículo endoplasmático (RE) fueron usados para evaluar el impacto de la concentración del SFB sobre los FGs. Los resultados indican que los FGs cultivados en presencia de 10% de SFB tuvieron una tasa de crecimiento más elevada en comparación con los FGs, cultivados en ausencia de SFB. El marcaje de los elementos celulares indica la ausencia de alteraciones en las organelas celulares de los FGs, cuando son cultivados en ausencia de SFB. En conclusión, los FGs son capaces de sobrevivir, proliferar y conservar sus características morfológicas, cuando son cultivados en presencia y ausencia de SFB.
Simancas-Escorcia, Victor
Díaz-Caballero, Antonio
Medios de cultivo
Proliferación celular
Mitocondrias
Lisosomas
Retículo endoplásmico
2
Núm. 2 , Año 2020 :Revista U.D.C.A Actualidad & Divulgación Científica. Julio-Diciembre
23
application/xml
Revista U.D.C.A Actualidad & Divulgación Científica
https://revistas.udca.edu.co/index.php/ruadc/article/view/993
application/pdf
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
Journal article
Fibroblasts are constituent cells of connective tissues. Gingival fibroblasts (GFs), cells responsible for the synthesis of the extracellular matrix (ECM) in the gingival connective tissue, participate in the regulation of healing and repair processes of the gingiva. Due to their regenerative potential, GFs could be cells capable of contributing to improve the healing processes at the local and systemic level and even be used as a useful cellular model in understanding of the physiopathological aspects of the oral cavity. The aim of the present work was to describe the impact of the concentration of fetal bovine serum (FBS) on the survival, growth and expression of cell markers in GFs. Cell cultures of GFs were performed for 7 days using DMEM culture medium (Dulbecco's Modified Eagle's medium) in the absence and presence of 10% FBS. Morphological and immunohistochemistry analyzes of actin, mitochondria, lysosomes and endoplasmic reticulum (ER) were used to evaluate the impact of FBS concentration on GFs. The results indicate that GFs cultured in the presence of 10% FBS had a higher growth rate compared to GFs cultured in the absence of FBS. The marking of the cellular elements indicates the absence of alterations in the cellular organelles of the GFs when they are cultured in the absence of FBS. In conclusion, GFs are capable to surviving, proliferating and conserving their morphological characteristics when they are cultured in the presence and absence of FBS.
Effect of the absence of fetal bovine serum on the morphology and organelles of fibroblast cells
Endoplasmic reticulum
Lysosomes
Mitochondria
Cell proliferation
Culture media
10.31910/rudca.v23.n2.2020.993
2619-2551
https://revistas.udca.edu.co/index.php/ruadc/article/download/993/1981
0123-4226
https://revistas.udca.edu.co/index.php/ruadc/article/download/993/2005
2020-12-31T00:00:00Z
2020-12-31
2020-12-31T00:00:00Z
https://doi.org/10.31910/rudca.v23.n2.2020.993
institution UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDECIENCIASAPLICADASYAMBIENTALES/logo.png
country_str Colombia
collection Revista U.D.C.A Actualidad & Divulgación Científica
title Efecto de la ausencia de suero fetal bovino sobre la morfología y organelas de células fibroblásticas
spellingShingle Efecto de la ausencia de suero fetal bovino sobre la morfología y organelas de células fibroblásticas
Simancas-Escorcia, Victor
Díaz-Caballero, Antonio
Medios de cultivo
Proliferación celular
Mitocondrias
Lisosomas
Retículo endoplásmico
Endoplasmic reticulum
Lysosomes
Mitochondria
Cell proliferation
Culture media
title_short Efecto de la ausencia de suero fetal bovino sobre la morfología y organelas de células fibroblásticas
title_full Efecto de la ausencia de suero fetal bovino sobre la morfología y organelas de células fibroblásticas
title_fullStr Efecto de la ausencia de suero fetal bovino sobre la morfología y organelas de células fibroblásticas
title_full_unstemmed Efecto de la ausencia de suero fetal bovino sobre la morfología y organelas de células fibroblásticas
title_sort efecto de la ausencia de suero fetal bovino sobre la morfología y organelas de células fibroblásticas
title_eng Effect of the absence of fetal bovine serum on the morphology and organelles of fibroblast cells
description Los fibroblastos son células constituyentes de los tejidos conectivo. Los fibroblastos gingivales (FGs), células responsables de la síntesis de la matriz extracelular (MEC) en el tejido conectivo gingival, participan en la regulación de los procesos de cicatrización y de reparación de la encía. Debido a su potencial regenerativo, los FGs podrían ser células capaces de contribuir a mejorar los procesos de cicatrización, a nivel local y sistémico e, incluso, ser utilizadas como un modelo celular útil en la comprensión de los aspectos fisiopatológicos de la cavidad oral. El objetivo del presente trabajo fue describir el impacto de la concentración del suero fetal bovino (SFB), en la supervivencia, el crecimiento y la expresión de marcadores celulares en los FGs. Cultivos celulares de FGs fueron realizados durante 7 días, utilizando medio de cultivo DMEM (Dulbecco’s Modified Eagle’s médium), en ausencia y presencia de 10% de SFB. Análisis morfológicos e inmunohistoquímicos de la actina, mitocondrias, lisosomas y retículo endoplasmático (RE) fueron usados para evaluar el impacto de la concentración del SFB sobre los FGs. Los resultados indican que los FGs cultivados en presencia de 10% de SFB tuvieron una tasa de crecimiento más elevada en comparación con los FGs, cultivados en ausencia de SFB. El marcaje de los elementos celulares indica la ausencia de alteraciones en las organelas celulares de los FGs, cuando son cultivados en ausencia de SFB. En conclusión, los FGs son capaces de sobrevivir, proliferar y conservar sus características morfológicas, cuando son cultivados en presencia y ausencia de SFB.
description_eng Fibroblasts are constituent cells of connective tissues. Gingival fibroblasts (GFs), cells responsible for the synthesis of the extracellular matrix (ECM) in the gingival connective tissue, participate in the regulation of healing and repair processes of the gingiva. Due to their regenerative potential, GFs could be cells capable of contributing to improve the healing processes at the local and systemic level and even be used as a useful cellular model in understanding of the physiopathological aspects of the oral cavity. The aim of the present work was to describe the impact of the concentration of fetal bovine serum (FBS) on the survival, growth and expression of cell markers in GFs. Cell cultures of GFs were performed for 7 days using DMEM culture medium (Dulbecco's Modified Eagle's medium) in the absence and presence of 10% FBS. Morphological and immunohistochemistry analyzes of actin, mitochondria, lysosomes and endoplasmic reticulum (ER) were used to evaluate the impact of FBS concentration on GFs. The results indicate that GFs cultured in the presence of 10% FBS had a higher growth rate compared to GFs cultured in the absence of FBS. The marking of the cellular elements indicates the absence of alterations in the cellular organelles of the GFs when they are cultured in the absence of FBS. In conclusion, GFs are capable to surviving, proliferating and conserving their morphological characteristics when they are cultured in the presence and absence of FBS.
author Simancas-Escorcia, Victor
Díaz-Caballero, Antonio
author_facet Simancas-Escorcia, Victor
Díaz-Caballero, Antonio
topicspa_str_mv Medios de cultivo
Proliferación celular
Mitocondrias
Lisosomas
Retículo endoplásmico
topic Medios de cultivo
Proliferación celular
Mitocondrias
Lisosomas
Retículo endoplásmico
Endoplasmic reticulum
Lysosomes
Mitochondria
Cell proliferation
Culture media
topic_facet Medios de cultivo
Proliferación celular
Mitocondrias
Lisosomas
Retículo endoplásmico
Endoplasmic reticulum
Lysosomes
Mitochondria
Cell proliferation
Culture media
citationvolume 23
citationissue 2
citationedition Núm. 2 , Año 2020 :Revista U.D.C.A Actualidad & Divulgación Científica. Julio-Diciembre
publisher Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
ispartofjournal Revista U.D.C.A Actualidad & Divulgación Científica
source https://revistas.udca.edu.co/index.php/ruadc/article/view/993
language Español
format Article
rights info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Victor Simancas-Escorcia, Antonio Díaz-Caballero - 2020
https://creativecommons.org/licenses/by-nc-sa/4.0/
references ODIOSO, L.; DOYLE, M.; QUINN, K.; BARTEL, R.; ZIMBER, M.; STEVENS-BURNS, D. 1995. Development and characterization of an in vitro gingival epithelial model. J. Periodontal Research (Reino Unido). 30(3):210-219. https://doi.org/10.1111/j.1600-0765.1995.tb01276.x
BALLABIO, A.; BONIFACINO, J. 2020. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell. Biol. (Reino Unido). 21(2):101-118. https://doi.org/10.1038/s41580-019-0185-4
BARTOLD, P.M.; WALSH, L.J.; NARAYANAN, A.S. 2000. Molecular and cell biology of the gingiva. Periodontology. (Singapur). 24(1):2855. https://doi.org/10.1034/j.1600-0757.2000.2240103.x
BASSO, F.G.; SOARES, D.G.; PANSANI, T.N.; CARDOSO, L.M.; SCHEFFEL D.L.; DE SOUZA COSTA, C.A.; HEBLING J. 2017. Proliferation, migration, and expression of oral‐mucosal‐healing‐related genes by oral fibroblasts receiving low‐level laser therapy after inflammatory cytokines challenge. Lasers in Surgery and Medicine (Estados Unidos). 48(10):1006-1014. https://doi.org/10.1002/lsm.22553
BOOR, P.; FLOEGE, J. 2012. The renal (myo-)fibroblast: a heterogeneous group of cells. Nephrology Dialysis Transplantation (Reino Unido). 27(8):3027-3036. https://doi.org/10.1093/ndt/gfs296
BRUNNER, D. 2010. Serum-free cell culture: the serum-free media interactive online database. ALTEX (Suiza). 27(1):53-62. https://doi.org/10.14573/altex.2010.1.53
BUCUR, M.; DINCA, O.; VLADAN, C.; POPP, C.; NICHITA, L.; CIOPLEA, M.; STÎNGA, P.; MUSTATEA, P.; ZURAC, S.; IONESCU, E. 2018. Variation in expression of inflammation-related signaling molecules with profibrotic and antifibrotic effects in cutaneous and oral mucosa scars. J Immunol Res (Egipto). 2018:5196023. https://doi.org/10.1155/2018/5196023
CARREL, A.; EBELING, A.H. 1926. The fundamental properties of the fibroblast and the macrophage: I. The fibroblast. The J. of Experimental Medicine (Estados Unidos). 44(2):261-284. https://doi.org/10.1084/jem.44.2.261
CHAI, Y.; JIANG, X.; ITO, Y.; BRINGAS, P.; HAN, J.; ROWITCH, D.H.; SORIANO, P.; MCMAHON, A.P.; SUCOV, H.M. 2000. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development (Cambridge). 127(8):1671-1679.
FARZANEH, M.; ZARE, M.; HASSANI, S.-N.; BAHARVAND, H. 2018. Effects of various culture conditions on pluripotent stem cell derivation from chick embryos. J. Cellular Biochemistry (Estados Unidos). 119(8):6325-6336. https://doi.org/10.1002/jcb.26761
GUICCIARDI, M.E.; LEIST, M.; GORES G.J. 2004. Lysosomes in cell death. Oncogene. 23(16):2881-2890. https://doi.org/10.1038/sj.onc.1207512
GÜRDAL, M.; BARUT, Ö.; BAYSAL, K.; DURAK, İ. 2018. Comparison of culture media indicates a role for autologous serum in enhancing phenotypic preservation of rabbit limbal stem cells in explant culture. Cytotechnology (Paises Bajos). 70(2):687-700. https://doi.org/10.1007/s10616-017-0171-7
KOMURO, Y.; MIYASHITA, N.; MORI, T.; MUNEYUKI, E.; SAITOH, T.; KOHDA, D.; SUGITA, Y. 2013. Energetics of the Presequence-Binding Poses in Mitochondrial Protein Import Through Tom20. The J. Physical Chemistry B (Estados Unidos). 117(10):2864-71. https://doi.org/10.1021/jp400113e
LYNN, S.; ARTHUR, S. 1984. Changes in serum influence the fatty acid composition of established cell lines. In Vitro (Estados Unidos). 20(9):732-738. https://doi.org/10.1007/bf02618879
RICHTER, U.; LAHTINEN, T.; MARTTINEN, P.; MYÖHÄNEN, M.; GRECO, D.; CANNINO, G.; JACOBS, H.; LIETZÉN, N.; NYMAN, T.; BATTERSBY, B. 2013. A mitochondrial ribosomal and RNA decay pathway blocks cell proliferation. Current Biology (Estados Unidos). 23(6):535-541. https://doi.org/10.1016/j.cub.2013.02.019
RITCHHART, C.; JOY, A. 2018. Reversal of drug-induced gingival overgrowth by UV-mediated apoptosis of gingival fibroblasts — an in vitro study. Annals of Anatomy - Anatomischer Anzeiger (Alemania). 217:7-11. https://doi.org/10.1016/j.aanat.2018.01.001
SIMANCAS-ESCORCIA, V.; DÍAZ-CABALLERO, A. 2019. Fisiología y usos terapéuticos de los fibroblastos gingivales. Odous Científica (Venezuela). 20(1):41-57. http://servicio.bc.uc.edu.ve/odontologia/revista/vol20n1/art05.pdf
SMITH, P.C.; MARTÍNEZ, C.; MARTÍNEZ, J.; MCCULLOCH, C.A. 2019. Role of fibroblast populations in periodontal wound healing and tissue remodeling. Front Physiol (Suiza). 10:270. https://doi.org/10.3389/fphys.2019.00270
SOARES, A.; SCELZA, M.; SPOLADORE, J.; GALLITO, M.; OLIVEIRA, F.; MORAES, R.; ALVES, G. 2018. Comparison of primary human gingival fibroblasts from an older and a young donor on the evaluation of cytotoxicity of denture adhesives. J. Appl. Oral Sci. (Brasil). 26:e20160594. https://doi.org/10.1590/1678-7757-2016-0594
SVITKINA, T. 2018. The actin cytoskeleton and actin-based motility. Cold Spring Harbor Perspectives in Biology (Estados Unidos). 10(1):a018267. https://doi.org/10.1101/cshperspect.a018267
TAKEUCHI, R.; MATSUMOTO, H.; ARIKAWA, K.; TAGUCHI, C.; NAKAYAMA, R.; NASU, I.; HIRATSUKA, K. 2017. Phenytoin‐induced gingival overgrowth caused by death receptor pathway malfunction. Oral Diseases (Reino Unido). 23(5):653-659. https://doi.org/10.1111/odi.12651
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2020-12-31
date_accessioned 2020-12-31T00:00:00Z
date_available 2020-12-31T00:00:00Z
url https://revistas.udca.edu.co/index.php/ruadc/article/view/993
url_doi https://doi.org/10.31910/rudca.v23.n2.2020.993
issn 0123-4226
eissn 2619-2551
doi 10.31910/rudca.v23.n2.2020.993
url4_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/download/993/1981
url2_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/download/993/2005
_version_ 1797159742827659264