Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami

Este trabajo hace una busqueda exhaustiva en base de datos académicas sobre  proyectos que tienen que ver con estructuras, dispositivos acústicos activos inspirados en metamateriales y en formas creadas a partir de patrones que se ven en la naturaleza, el enfoque del trabajo es dar una mirada a manera prospectiva de los diferentes escenarios que resultan de los diferentes proyectos que innovadores en la acústica arquitectónica, también como un aporte de vigilancia tecnológica y estrado de arte  sobre este tipo de dispositvos. Se expone un informe detallado de cual es la estado actual de la producción científica en este campo y como está nuestro pais con repecto a otros paises teniendo en cuenta que la acústica arquitectónica confluye en nmu... Ver más

Guardado en:

2027-5846

13

2022-09-27

35

47

http://purl.org/coar/access_right/c_abf2

info:eu-repo/semantics/openAccess

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Ingenierías USBMed - 2022

id 3f22ab22d87acb992510eff8429b7609
record_format ojs
spelling Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami
T. Tachi, “Generalization of rigid foldable quadrilateral mesh origami”, presented at the International Association for Shell and Spatial Structures (ASS) Symposium 2009, Valencia, España, Sept. 28 – Oct. 2, 2009. Available: https://iam.tug raz.at/workshop_rijeka/wp-content/uploads/201 2/09/RigidFoldableQuadMeshOrigami_tachi_IA SS2009.pdf.
M. Thota y K. W. Wang, “Reconfigurable origami sonic barriers with tunable bandgaps for traffic noise mitigation,” Journal of Applied Physics, n◦ 122, 2017. https://doi.org/10.1063/1.4991026.
C. Samuelsson y B. Vestlund, “Structural folding. A parametric design method for origami architecture”. M.S. Thesis, Chalmers University of Technology, Gotemburgo, Suecia, 2015. Available: https://odr.chalmers.se/handle/20.500.12380/222002.
Z. Y. Wei, Z. V. Guo, L. Dudte, H. Y. Liang y L. Mahadevan, “Geometric mechanics of periodic pleated origami,” Physical Review Letters, vol. 110, n◦. 21, 2013. https://doi.org/10.1103/ PhysRevLett.110.215501.
X. Yang, “Adaptive acoustic origami”. M.S. Thesis, Universidad de Melbourne, 2017. Available: https://www.youtube.com/watch v=RKOUn-J6HL4&feature=share.
H. Buri e Y.Weinand, “ORIGAMI - Folded Plate Structures, Architecture”, presented at the 10th World Conference on Timber Engineering, Miyazaki, Japón, June 2-5, 2017.
M. Giodice, “Modellazione parametrica e comportamento meccanico di superfici adattive in architettura: Analisi esperimentazione”. Ph. D. dissertation, Sapienza Università di Rom, 2017. Available: https://core.ac.uk/display/127586956? recSetID=.
E. Demaine y T. Tachi, “Origamizer: A practical algorithm for folding any polyhedron”, presented at the 33rd International Symposium of Computational Geometry, Brisbane, Australia, Jul. 4-7, 2017. https://doi.org/10.4230/LIPIcs.SoCG. 2017.34.
Tachi Lab, “Software. Freeform Origami”. Available https://origami.c.u- tokyo.ac.jp/~tachi/ software/
M. Schenk, J. M. Allwood y S. D. Guest, “Cold gas-pressure folding of Miura-ori sheets”, presented at the 10th International Conference on Technology of Plasticity, ICTP 2011, Asquigrán, Alemania, Sept. 25–30, 2011. Available: http://www2. eng.cam.ac.uk/~sdg/preprint/MiuraForming. pdf.
T. Tachi y T. C. Hull, “Self-foldability of rigid origami,” Journal of Mechanisms and Robotics, vol. 9, n◦ 2, Aprl., 2017. https : / / doi .org / 10 .1115/1.4035558.
M. Schenk y S. Guest, “Origami folding: A structural engineering approach”, presented at the 10th International Conference on Technology of Plasticity, ICTP 2011, Asquigrán, Alemania, Sept. 25–30, 2011. Available http://www2.eng.cam. ac.uk/~sdg/preprint/5OSME.pdf.
“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/ search/en/result.jsf?_vid=P12-L3AQ1B-59073 (accessed May 22, 2019).
“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/ search/en/result.jsf?_vid=P21-L3ANMC-29031 (accessed May 21, 2019).
“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/ search/en/result.jsf?_vid=P21-L3ANJT-28555 (accessed May 20, 2019).
“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/ search/en/result.jsf?_vid=P21-L3ANF7-27516 (accessed May 16, 2021).
“OMPI - Búsqueda en las colecciones de patentesnacionales e internacionales”. https://patentscope.wipo.int/search/es/result.jsf?_vid=P21-L3AN78-25698 (accessed May 15, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=8a446aa1d280c011d6d8903c53dc060d&origin=resultslist&src=s&s=TITLE-ABS-KEY%28metamaterials+acoustics+origami%29&sort=plf-f&sdt=b&sot=b&sl=46&count=25&analyzeResult s=Analyze+results&txGid=dfce0edd4e066583197151a673a210bf (accessed June 6, 2020).
“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plf-f&src=s&st1=metamaterials+acoustics+origami&sid=8a446aa1d280c011d6d8903c53dc060d&sot=b&sdt=b&sl=46&s=TITLE-ABS-KEY%28metamaterials+acoustics+origami%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 6, 2020).
E. Demaine y T. Tachi, “Origamizer: A practical algorithm for folding any polyhedron”, presented at the 33rd International Symposium of Computational Geometry, Brisbane, Australia, Jul. 4–7, 2017. https://doi.org/10.4230/LIPIcs.SoCG.2017.34.
R. Resch y E. Armstrong, “The Ron Resch paper and stick film”, 1992 [Online]. Available: https://www.youtube.com/watch v=imlMspPKfNo.
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=715a1bca93a42908f79df5b09c9024d1&origin=resultslist&src=s&s=TITLE-ABS-KEY%28metamaterials+acoustics%29&sort=plf-f&sdt=b&sot=b&sl=38&count=3460&analyzeResults=Analyze+results&txGid=73d3f72662e040249175e177eee7a6df(accessed June 7, 2020).
R. Foschi, “Algorithmic modelling of folded surfaces. Analysis and design of folded surfaces in architecture and manufacturing”. P.h. D. dissertation, Alma Mater Studiorum, Universidad de Boloña, 2019. https://doi.org/10.6092/unibo/amsdottorato/8871.
Text
http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:eu-repo/semantics/article
M. Giodice, “Modellazione parametrica e comportamento meccanico di superfici adattive in architettura: Analisi e sperimentazione”. P.h. D. dissertation, Sapienza Università di Roma, 2017. https://core.ac.uk/display/127586956?recSetID=.
G. Epps, “RoboFold and Robots.IO,” Architectural Design, vol. 84, n◦. 3, pp. 68–69, 2014. https: //doi.org/10.1002/ad.1757.
R. Foschi, “Algorithmic modelling of folded surfaces. Analysis and design of folded surfaces in architecture and manufacturing”. Ph. D. dissertation, Alma Mater Studiorum, Universidad de Boloña, 2019. https://doi.org/10.6092/unibo/amsdottorato/8871.
J. M. Gattas y Z. You, “Design and digital fabrication of folded sandwich structures,” Automation in Construction, n◦ 63, pp. 79-87, March, 2016. https://doi.org/10.1016/j.autcon.2015.12.002.
R. Foschi, “Algorithmic modelling of folded surfaces. Analysis and design of folded surfaces in architecture and manufacturing”. Ph. D. Thesis, Alma Mater Studiorum, Universidad de Boloña, 2019. https://doi.org/10.6092/unibo/amsdottora to/8871.
Origamisimulator.org [Online]. Available http:// apps.amandaghassaei.com/OrigamiSimulator/
J. Mitani y T. Igarashi, “Interactive design of planar curved folding by reection”, presented at the 19th Pacific Conference on Computer Graphics and Applications, Pacific Graphics, Kaohsiung, Taiwán, Sept. 21-23. Available: https://www.jst. go.jp/erato/igarashi/publications/001/PG2011. pdf.
T. Tachi y T. C. Hull, “Self-foldability of rigid origami,” Journal of Mechanisms and Robotics, vol. 9, n◦ 2, Aprl., 2017. https : / / doi .org/ 10 .1115/1.4035558.
P. Wang-Inverson, R. J. Lang and M. Yim (eds.), Origami 5. Proceedings to the Fifth International Meeting of Origami Science, Mathematics and Education, Ciudad de Nueva York, NY: AK Peters / CRC Press, 2011.
E. Demaine y T. Tachi, “Origamizer: A ractical algorithm for folding any polyhedron”, presented at the 33rd International Symposium of Computational Geometry, Brisbane, Australia, Jul. 4-7, 2017. https://doi.org/10.4230/LIPIcs.SoCG.2017.34.
Tachi Lab, “Software. Freeform Origami” [Online]. Available: https://origami.c.u-tokyo.ac.jp/~tachi/software/
Robert J. Lang Origami TASON, “TreeMaker” [Online]. Available: https : / / langorigami .com/ article/treemaker/
“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plff&src=s&st1=acoustic+metamaterials+resonator&sid=62ff9286413a9c8fd79469f1c0ca6257&sot=b&sdt=b&sl=47&s=TITLE-ABS-KEY%28acoustic+metamaterials+resonator%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 9, 2020).
“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sor t=plf-f&src=s&st1=metamaterials+acoustics&sid=715a1bca93a42908f79df5b09c9024d1&sot=b&sdt=b&sl=38&s=TITLE-ABS-KEY%28metamaterials+acoustics%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 7, 2020).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=0a16d1c1f15117de1cc89234aee6d30b&origin=resultslist&src=s&s=TITLE-ABS-KEY%28origami++architectural+geometry%29&sort=plf-f&sdt=b&sot=b&sl=46&count=39&analyzeResults=Analyze+results&txGid=8de4da2290832e5ae1b2236f0c02a041 (accessed June 8, 2019).
13
Ingenierías USBMed
Universidad San Buenaventura - USB (Colombia)
application/pdf
Artículo de revista
Núm. 2 , Año 2022 : Ingenierías USBMed
2
diseño
Español
plegado
cinética
Acústica arquitectónica
metamateriales
Origami
Alzate Arias, Fredy Alberto
Este trabajo hace una busqueda exhaustiva en base de datos académicas sobre  proyectos que tienen que ver con estructuras, dispositivos acústicos activos inspirados en metamateriales y en formas creadas a partir de patrones que se ven en la naturaleza, el enfoque del trabajo es dar una mirada a manera prospectiva de los diferentes escenarios que resultan de los diferentes proyectos que innovadores en la acústica arquitectónica, también como un aporte de vigilancia tecnológica y estrado de arte  sobre este tipo de dispositvos. Se expone un informe detallado de cual es la estado actual de la producción científica en este campo y como está nuestro pais con repecto a otros paises teniendo en cuenta que la acústica arquitectónica confluye en nmuchas aéras de conocimiento como son los materiales, la ingeniería civil, la física y el diseño, combinando la ciencia,  el arte, la tecnología e innovación como vertientes principales del grupo de investigacón de la Facultad be Artes y Humanidades del Intesituto Técnológico Metropolitano  
https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/4495
Publication
https://creativecommons.org/licenses/by-nc-nd/4.0
“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/search/en/result.jsf?_vid=P10-L5B9XI-82878 (accessed June 7, 2019).
“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plf-f&src=s&st1=origami++architectural+geometry&sid=0a16d1c1f15117de1cc89234aee6d30b&sot=b&sdt=b&sl=46&s=TITLE-ABS-KE Y%28origami++architectural+geometry%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 8, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=c7e795144faed70b5f055b88bf062332&origin=resultslist&src=s&s=TITLE-ABS-KEY%28origami+panel+acoustics%29&sort=plff&sdt=b&sot=b&sl=38&count=7&analyzeResults=Analyze+results&txGid=e185430da799838902091b86750e43a (accessed May 14, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid =60d2b163e3c397db07502e7ceb2fccf0&origin=resultslist&src=s&s=TITLE-ABS-KEY%28origami+folded+acoustics%29&sort=plf-f&sdt=b&s ot=b&sl=39&count=11&analyzeResults=Analyze+results&txGid=6d4b15dbd99a0625b6692527e055603d (accessed May 13, 2019).
“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plff&src=s&st1=origami+acoustics&sid=33d374daffc103b360e9a3ad606af6cf&sot=b&sdt=b&sl=32&s=TITLE-ABS-KEY%28origami+acoustics%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 7, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=f432f78bb8622fb777103db09bfbedb0&origin=resultslist&src=s&s=TITLE-ABS-KEY%28Acoustics+and+panels%29&sort=plf-f&sdt=b&sot=b&sl=35&count=7906&analyzeResults=Analyze+results&txGid=8c9ba5666cab7dbc8b3cfda01 6e6f20c (accessed May 25, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=513058b33fa3cdacd83338d8f8731e8d&origin=resultslist&src=s&s=TITLE-ABS-KEY%28acoustics+panels+noise%29&sort=plf-f&sdt=b&sot=b&sl=37&count=3472&analyzeResults=Analyze+results&txGid=f0e5c2f110ccc9cbce18f68f9c383594 (accessed May 24, 2019).
“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plf-f&src=s&st1=acoustics++AND+materials++AND+noise&sid=353ba33aa82f014c50e0 26dc7896c4c4&sot=b&sdt=b&sl=50&s=TITLEABS-KEY%28acoustics++AND+materials++AND+noise%29&origin=searchbasic&editSaveSea rch=&yearFrom=Before+1960&yearTo=Present(accessed July 7, 2019).
“ScienceDirect Search Results - Keywords (materials acoustics)”. https://sciencedirect.bibliotecaitm.elogim.com/search?qs=materials%20acoustics&years=2003%2C2004%2C2005%2C2006%2C2007%2C2008%2C2009%2C2018%2C2017%2C2016%2C2015%2C2014%2C2013%2C2012%2C2011%2C2010&articleTypes=FLA&sortBy=relevance&publicationTitles=271440&lastSelectedFacet=publicationTitles (accessed June 7, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=39d348ee250df998cc73d949b8cddfc8&origin=resultslist&src=s&s=TITLE-ABS-KEY%28acoustics++materials%29&sort=plff&sdt=b&sot=b&sl=35&count=80940&analyzeResults=Analyze+results&txGid=475d8e8395612e632983b3068e786e1a (accessed May 20, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=f92d0e0bdd5bafb137f428f41c13be35&origin=resultslist&src=s&s=TITLE-ABS-KEY%28acoustics++metamaterials+nanomaterials%29&sort=plf-f&sdt=b&sot=b&sl=53&count=7&analyzeResults=Analyze+results&txGid=16f5a0d320ad451bb028fedb0d988f15 (accessed May 16, 2019).
R.Walser, “Metamaterials: What are they? What are they good for?,” ene. 2000.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Ingenierías USBMed - 2022
Journal article
Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami
Palabras claves: Metamateriales, Acústica Arquitectónica, Origami, Cinética, Plegado, Diseño
This work does a comprehensive look in academic database on projects that have to do with structures, active acoustic devices inspired by metamaterials and in forms created from patterns seen in nature, the focus of the work is to give a forward-looking look at the different scenarios that result from the different projects that innovative in architectural acoustics, also as a contribution of technological vigilance and art strait on this type of device. A detailed report of what is the current state of scientific production in this field and as is our country with review to other countries considering that architectural acoustics converge in many fields of knowledge such as materials, the civil engineering, physics and design, combining science, art, technology and innovation as the main aspects of the research group of the Faculty be Arts and Humanities of the Metropolitan Technological Institute.
https://doi.org/10.21500/20275846.4495
2022-09-27T00:00:00Z
2022-09-27T00:00:00Z
2022-09-27
47
https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/4495/4858
35
10.21500/20275846.4495
2027-5846
institution UNIVERSIDAD DE SAN BUENAVENTURA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDESANBUENAVENTURA_COLOMBIA/logo.png
country_str Colombia
collection Ingenierías USBMed
title Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami
spellingShingle Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami
Alzate Arias, Fredy Alberto
diseño
plegado
cinética
Acústica arquitectónica
metamateriales
Origami
Palabras claves: Metamateriales, Acústica Arquitectónica, Origami, Cinética, Plegado, Diseño
title_short Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami
title_full Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami
title_fullStr Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami
title_full_unstemmed Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami
title_sort prospectiva de diseño de dispositivos acusticos con metamateriales. técnicas origami
title_eng Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami
description Este trabajo hace una busqueda exhaustiva en base de datos académicas sobre  proyectos que tienen que ver con estructuras, dispositivos acústicos activos inspirados en metamateriales y en formas creadas a partir de patrones que se ven en la naturaleza, el enfoque del trabajo es dar una mirada a manera prospectiva de los diferentes escenarios que resultan de los diferentes proyectos que innovadores en la acústica arquitectónica, también como un aporte de vigilancia tecnológica y estrado de arte  sobre este tipo de dispositvos. Se expone un informe detallado de cual es la estado actual de la producción científica en este campo y como está nuestro pais con repecto a otros paises teniendo en cuenta que la acústica arquitectónica confluye en nmuchas aéras de conocimiento como son los materiales, la ingeniería civil, la física y el diseño, combinando la ciencia,  el arte, la tecnología e innovación como vertientes principales del grupo de investigacón de la Facultad be Artes y Humanidades del Intesituto Técnológico Metropolitano  
description_eng This work does a comprehensive look in academic database on projects that have to do with structures, active acoustic devices inspired by metamaterials and in forms created from patterns seen in nature, the focus of the work is to give a forward-looking look at the different scenarios that result from the different projects that innovative in architectural acoustics, also as a contribution of technological vigilance and art strait on this type of device. A detailed report of what is the current state of scientific production in this field and as is our country with review to other countries considering that architectural acoustics converge in many fields of knowledge such as materials, the civil engineering, physics and design, combining science, art, technology and innovation as the main aspects of the research group of the Faculty be Arts and Humanities of the Metropolitan Technological Institute.
author Alzate Arias, Fredy Alberto
author_facet Alzate Arias, Fredy Alberto
topicspa_str_mv diseño
plegado
cinética
Acústica arquitectónica
metamateriales
Origami
topic diseño
plegado
cinética
Acústica arquitectónica
metamateriales
Origami
Palabras claves: Metamateriales, Acústica Arquitectónica, Origami, Cinética, Plegado, Diseño
topic_facet diseño
plegado
cinética
Acústica arquitectónica
metamateriales
Origami
Palabras claves: Metamateriales, Acústica Arquitectónica, Origami, Cinética, Plegado, Diseño
citationvolume 13
citationissue 2
citationedition Núm. 2 , Año 2022 : Ingenierías USBMed
publisher Universidad San Buenaventura - USB (Colombia)
ispartofjournal Ingenierías USBMed
source https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/4495
language Español
format Article
rights http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/4.0
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Ingenierías USBMed - 2022
references T. Tachi, “Generalization of rigid foldable quadrilateral mesh origami”, presented at the International Association for Shell and Spatial Structures (ASS) Symposium 2009, Valencia, España, Sept. 28 – Oct. 2, 2009. Available: https://iam.tug raz.at/workshop_rijeka/wp-content/uploads/201 2/09/RigidFoldableQuadMeshOrigami_tachi_IA SS2009.pdf.
M. Thota y K. W. Wang, “Reconfigurable origami sonic barriers with tunable bandgaps for traffic noise mitigation,” Journal of Applied Physics, n◦ 122, 2017. https://doi.org/10.1063/1.4991026.
C. Samuelsson y B. Vestlund, “Structural folding. A parametric design method for origami architecture”. M.S. Thesis, Chalmers University of Technology, Gotemburgo, Suecia, 2015. Available: https://odr.chalmers.se/handle/20.500.12380/222002.
Z. Y. Wei, Z. V. Guo, L. Dudte, H. Y. Liang y L. Mahadevan, “Geometric mechanics of periodic pleated origami,” Physical Review Letters, vol. 110, n◦. 21, 2013. https://doi.org/10.1103/ PhysRevLett.110.215501.
X. Yang, “Adaptive acoustic origami”. M.S. Thesis, Universidad de Melbourne, 2017. Available: https://www.youtube.com/watch v=RKOUn-J6HL4&feature=share.
H. Buri e Y.Weinand, “ORIGAMI - Folded Plate Structures, Architecture”, presented at the 10th World Conference on Timber Engineering, Miyazaki, Japón, June 2-5, 2017.
M. Giodice, “Modellazione parametrica e comportamento meccanico di superfici adattive in architettura: Analisi esperimentazione”. Ph. D. dissertation, Sapienza Università di Rom, 2017. Available: https://core.ac.uk/display/127586956? recSetID=.
E. Demaine y T. Tachi, “Origamizer: A practical algorithm for folding any polyhedron”, presented at the 33rd International Symposium of Computational Geometry, Brisbane, Australia, Jul. 4-7, 2017. https://doi.org/10.4230/LIPIcs.SoCG. 2017.34.
Tachi Lab, “Software. Freeform Origami”. Available https://origami.c.u- tokyo.ac.jp/~tachi/ software/
M. Schenk, J. M. Allwood y S. D. Guest, “Cold gas-pressure folding of Miura-ori sheets”, presented at the 10th International Conference on Technology of Plasticity, ICTP 2011, Asquigrán, Alemania, Sept. 25–30, 2011. Available: http://www2. eng.cam.ac.uk/~sdg/preprint/MiuraForming. pdf.
T. Tachi y T. C. Hull, “Self-foldability of rigid origami,” Journal of Mechanisms and Robotics, vol. 9, n◦ 2, Aprl., 2017. https : / / doi .org / 10 .1115/1.4035558.
M. Schenk y S. Guest, “Origami folding: A structural engineering approach”, presented at the 10th International Conference on Technology of Plasticity, ICTP 2011, Asquigrán, Alemania, Sept. 25–30, 2011. Available http://www2.eng.cam. ac.uk/~sdg/preprint/5OSME.pdf.
“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/ search/en/result.jsf?_vid=P12-L3AQ1B-59073 (accessed May 22, 2019).
“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/ search/en/result.jsf?_vid=P21-L3ANMC-29031 (accessed May 21, 2019).
“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/ search/en/result.jsf?_vid=P21-L3ANJT-28555 (accessed May 20, 2019).
“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/ search/en/result.jsf?_vid=P21-L3ANF7-27516 (accessed May 16, 2021).
“OMPI - Búsqueda en las colecciones de patentesnacionales e internacionales”. https://patentscope.wipo.int/search/es/result.jsf?_vid=P21-L3AN78-25698 (accessed May 15, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=8a446aa1d280c011d6d8903c53dc060d&origin=resultslist&src=s&s=TITLE-ABS-KEY%28metamaterials+acoustics+origami%29&sort=plf-f&sdt=b&sot=b&sl=46&count=25&analyzeResult s=Analyze+results&txGid=dfce0edd4e066583197151a673a210bf (accessed June 6, 2020).
“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plf-f&src=s&st1=metamaterials+acoustics+origami&sid=8a446aa1d280c011d6d8903c53dc060d&sot=b&sdt=b&sl=46&s=TITLE-ABS-KEY%28metamaterials+acoustics+origami%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 6, 2020).
E. Demaine y T. Tachi, “Origamizer: A practical algorithm for folding any polyhedron”, presented at the 33rd International Symposium of Computational Geometry, Brisbane, Australia, Jul. 4–7, 2017. https://doi.org/10.4230/LIPIcs.SoCG.2017.34.
R. Resch y E. Armstrong, “The Ron Resch paper and stick film”, 1992 [Online]. Available: https://www.youtube.com/watch v=imlMspPKfNo.
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=715a1bca93a42908f79df5b09c9024d1&origin=resultslist&src=s&s=TITLE-ABS-KEY%28metamaterials+acoustics%29&sort=plf-f&sdt=b&sot=b&sl=38&count=3460&analyzeResults=Analyze+results&txGid=73d3f72662e040249175e177eee7a6df(accessed June 7, 2020).
R. Foschi, “Algorithmic modelling of folded surfaces. Analysis and design of folded surfaces in architecture and manufacturing”. P.h. D. dissertation, Alma Mater Studiorum, Universidad de Boloña, 2019. https://doi.org/10.6092/unibo/amsdottorato/8871.
M. Giodice, “Modellazione parametrica e comportamento meccanico di superfici adattive in architettura: Analisi e sperimentazione”. P.h. D. dissertation, Sapienza Università di Roma, 2017. https://core.ac.uk/display/127586956?recSetID=.
G. Epps, “RoboFold and Robots.IO,” Architectural Design, vol. 84, n◦. 3, pp. 68–69, 2014. https: //doi.org/10.1002/ad.1757.
R. Foschi, “Algorithmic modelling of folded surfaces. Analysis and design of folded surfaces in architecture and manufacturing”. Ph. D. dissertation, Alma Mater Studiorum, Universidad de Boloña, 2019. https://doi.org/10.6092/unibo/amsdottorato/8871.
J. M. Gattas y Z. You, “Design and digital fabrication of folded sandwich structures,” Automation in Construction, n◦ 63, pp. 79-87, March, 2016. https://doi.org/10.1016/j.autcon.2015.12.002.
R. Foschi, “Algorithmic modelling of folded surfaces. Analysis and design of folded surfaces in architecture and manufacturing”. Ph. D. Thesis, Alma Mater Studiorum, Universidad de Boloña, 2019. https://doi.org/10.6092/unibo/amsdottora to/8871.
Origamisimulator.org [Online]. Available http:// apps.amandaghassaei.com/OrigamiSimulator/
J. Mitani y T. Igarashi, “Interactive design of planar curved folding by reection”, presented at the 19th Pacific Conference on Computer Graphics and Applications, Pacific Graphics, Kaohsiung, Taiwán, Sept. 21-23. Available: https://www.jst. go.jp/erato/igarashi/publications/001/PG2011. pdf.
T. Tachi y T. C. Hull, “Self-foldability of rigid origami,” Journal of Mechanisms and Robotics, vol. 9, n◦ 2, Aprl., 2017. https : / / doi .org/ 10 .1115/1.4035558.
P. Wang-Inverson, R. J. Lang and M. Yim (eds.), Origami 5. Proceedings to the Fifth International Meeting of Origami Science, Mathematics and Education, Ciudad de Nueva York, NY: AK Peters / CRC Press, 2011.
E. Demaine y T. Tachi, “Origamizer: A ractical algorithm for folding any polyhedron”, presented at the 33rd International Symposium of Computational Geometry, Brisbane, Australia, Jul. 4-7, 2017. https://doi.org/10.4230/LIPIcs.SoCG.2017.34.
Tachi Lab, “Software. Freeform Origami” [Online]. Available: https://origami.c.u-tokyo.ac.jp/~tachi/software/
Robert J. Lang Origami TASON, “TreeMaker” [Online]. Available: https : / / langorigami .com/ article/treemaker/
“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plff&src=s&st1=acoustic+metamaterials+resonator&sid=62ff9286413a9c8fd79469f1c0ca6257&sot=b&sdt=b&sl=47&s=TITLE-ABS-KEY%28acoustic+metamaterials+resonator%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 9, 2020).
“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sor t=plf-f&src=s&st1=metamaterials+acoustics&sid=715a1bca93a42908f79df5b09c9024d1&sot=b&sdt=b&sl=38&s=TITLE-ABS-KEY%28metamaterials+acoustics%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 7, 2020).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=0a16d1c1f15117de1cc89234aee6d30b&origin=resultslist&src=s&s=TITLE-ABS-KEY%28origami++architectural+geometry%29&sort=plf-f&sdt=b&sot=b&sl=46&count=39&analyzeResults=Analyze+results&txGid=8de4da2290832e5ae1b2236f0c02a041 (accessed June 8, 2019).
“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/search/en/result.jsf?_vid=P10-L5B9XI-82878 (accessed June 7, 2019).
“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plf-f&src=s&st1=origami++architectural+geometry&sid=0a16d1c1f15117de1cc89234aee6d30b&sot=b&sdt=b&sl=46&s=TITLE-ABS-KE Y%28origami++architectural+geometry%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 8, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=c7e795144faed70b5f055b88bf062332&origin=resultslist&src=s&s=TITLE-ABS-KEY%28origami+panel+acoustics%29&sort=plff&sdt=b&sot=b&sl=38&count=7&analyzeResults=Analyze+results&txGid=e185430da799838902091b86750e43a (accessed May 14, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid =60d2b163e3c397db07502e7ceb2fccf0&origin=resultslist&src=s&s=TITLE-ABS-KEY%28origami+folded+acoustics%29&sort=plf-f&sdt=b&s ot=b&sl=39&count=11&analyzeResults=Analyze+results&txGid=6d4b15dbd99a0625b6692527e055603d (accessed May 13, 2019).
“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plff&src=s&st1=origami+acoustics&sid=33d374daffc103b360e9a3ad606af6cf&sot=b&sdt=b&sl=32&s=TITLE-ABS-KEY%28origami+acoustics%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 7, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=f432f78bb8622fb777103db09bfbedb0&origin=resultslist&src=s&s=TITLE-ABS-KEY%28Acoustics+and+panels%29&sort=plf-f&sdt=b&sot=b&sl=35&count=7906&analyzeResults=Analyze+results&txGid=8c9ba5666cab7dbc8b3cfda01 6e6f20c (accessed May 25, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=513058b33fa3cdacd83338d8f8731e8d&origin=resultslist&src=s&s=TITLE-ABS-KEY%28acoustics+panels+noise%29&sort=plf-f&sdt=b&sot=b&sl=37&count=3472&analyzeResults=Analyze+results&txGid=f0e5c2f110ccc9cbce18f68f9c383594 (accessed May 24, 2019).
“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plf-f&src=s&st1=acoustics++AND+materials++AND+noise&sid=353ba33aa82f014c50e0 26dc7896c4c4&sot=b&sdt=b&sl=50&s=TITLEABS-KEY%28acoustics++AND+materials++AND+noise%29&origin=searchbasic&editSaveSea rch=&yearFrom=Before+1960&yearTo=Present(accessed July 7, 2019).
“ScienceDirect Search Results - Keywords (materials acoustics)”. https://sciencedirect.bibliotecaitm.elogim.com/search?qs=materials%20acoustics&years=2003%2C2004%2C2005%2C2006%2C2007%2C2008%2C2009%2C2018%2C2017%2C2016%2C2015%2C2014%2C2013%2C2012%2C2011%2C2010&articleTypes=FLA&sortBy=relevance&publicationTitles=271440&lastSelectedFacet=publicationTitles (accessed June 7, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=39d348ee250df998cc73d949b8cddfc8&origin=resultslist&src=s&s=TITLE-ABS-KEY%28acoustics++materials%29&sort=plff&sdt=b&sot=b&sl=35&count=80940&analyzeResults=Analyze+results&txGid=475d8e8395612e632983b3068e786e1a (accessed May 20, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=f92d0e0bdd5bafb137f428f41c13be35&origin=resultslist&src=s&s=TITLE-ABS-KEY%28acoustics++metamaterials+nanomaterials%29&sort=plf-f&sdt=b&sot=b&sl=53&count=7&analyzeResults=Analyze+results&txGid=16f5a0d320ad451bb028fedb0d988f15 (accessed May 16, 2019).
R.Walser, “Metamaterials: What are they? What are they good for?,” ene. 2000.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2022-09-27
date_accessioned 2022-09-27T00:00:00Z
date_available 2022-09-27T00:00:00Z
url https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/4495
url_doi https://doi.org/10.21500/20275846.4495
eissn 2027-5846
doi 10.21500/20275846.4495
citationstartpage 35
citationendpage 47
url2_str_mv https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/4495/4858
_version_ 1798736067828908032