Caracterización estructural, térmica y morfológica de Crescentia cujete (totumo) con potencial uso como polímero biodegradable

Actualmente, se reconoce que los plásticos derivados de productos petroquímicos son uno de los mayores problemas sociales y ambientales, debido al uso excesivo y a la dificultad de su descomposición, lo que ha aumentado la preocupación por encontrar alternativas a estos materiales. De esta forma, este trabajo se centra en la caracterización por medio de DRX, FRX FTIR, DSC, TGA y análisis cualitativo de biodegradabilidad del fruto de Crescentia cujete (totumo), a fin de establecer bases para ser considerado una alternativa de uso, como polímero biodegradable. Los resultados de la caracterización estructural evidenciaron que se trata de un material semicristalino, compuesto, principalmente, de celulosa tipo I, con una cristalinidad del 29 %.... Ver más

Guardado en:

0123-4226

2619-2551

26

2023-12-31

http://purl.org/coar/access_right/c_abf2

info:eu-repo/semantics/openAccess

Raúl Fernando Sánchez-Aguilar, Yineer Alexis Castillo, Sandro Alberto Ibarra-Sanchez, Javier Andres Muñoz-Chaves - 2023

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

id 3c77b3d13253d6cc21d7a24ba298cb51
record_format ojs
spelling Caracterización estructural, térmica y morfológica de Crescentia cujete (totumo) con potencial uso como polímero biodegradable
KASSAB, Z.; ABDELLAOUI, Y.; SALIM, M.H.; EL ACHABY, M. 2020a. Cellulosic materials from pea (Pisum Sativum) and broad beans (Vicia Faba) pods agro-industrial residues. Materials Letters. 280:128539 https://doi.org/10.1016/j.matlet.2020.128539
ORGANIZACIÓN DE LAS NACIONES UNIDAS, ONU. 2018. O nos divorciamos del plástico, o nos olvidamos del planeta. Noticias ONU. Disponible desde Internet en: https://news.un.org/es/story/2018/06/1435111
NKOSIVELE, Z.; MZIMELA, T.; LINGANISO, L.Z.; REVAPRASADU, N.; MOTAUNG, T.E. 2018. Comparison of Cellulose Extraction from Sugarcane Bagasse Through Alkali 3 . Results and Discussion. Materials Research. 21(6):7. https://doi.org/10.1590/1980-5373-MR-2017-0750
MENESES, J.; CORRALES, C.; VALENCIA, M. 2007. Síntesis y caracterización de un polímero biodegradable a partir del almidón de yuca. Revista EIA. 8(5):57-67.
LONG, D.A. 2004. Infrared and Raman characteristic group frequencies. Tables and chartsGeorge Socrates John Wiley and Sons, Ltd, Chichester, Third Edition, 2001. Price £135. Journal of Raman Spectroscopy. 35(10):905-905. https://doi.org/10.1002/jrs.1238
LIN, Q.; HUANG, Y.; YU, W. 2020. An in-depth study of molecular and supramolecular structures of bamboo cellulose upon heat treatment. Carbohydrate Polymers. 241:116412. https://doi.org/10.1016/j.carbpol.2020.116412
LAM, N.T.; CHOLLAKUP, R.; SMITTHIPONG, W.; NIMCHUA, T.; SUKYAI, P. 2017. Characterization of cellulose nanocrystals extracted from sugarcane bagasse for potential biomedical materials. Sugar Tech. 19(5):539-552. https://doi.org/10.1007/s12355-016-0507-1
KASSAB, Z.; SYAFRI, E.; TAMRAOUI, Y.; HANNACHE, H.; EL KACEM QAISS, A.; EL ACHABY, M. 2020c. Characteristics of sulfated and carboxylated cellulose nanocrystals extracted from Juncus plant stems. International Journal of Biological Macromolecules. 154:1419-1425. https://doi.org/10.1016/j.ijbiomac.2019.11.023
KASSAB, Z.; KASSEM, I.; HANNACHE, H.; BOUHFID, R.; QAISS, A.E.K.; EL ACHABY, M. 2020b. Tomato plant residue as new renewable source for cellulose production: extraction of cellulose nanocrystals with different surface functionalities. Cellulose. 27(8)4287-4303. https://doi.org/10.1007/s10570-020-03097-7
JOHARI, A.P.; KURMVANSHI, S.K.; MOHANTY, S.; NAYAK, S.K. 2016. Influence of surface modified cellulose microfibrils on the improved mechanical properties of poly (lactic acid). International Journal of Biological Macromolecules. 84:329-339. https://doi.org/10.1016/j.ijbiomac.2015.12.038
PECH-COHUO, S.C.; CANCHE-ESCAMILLA, G.; VALADEZ-GONZÁLEZ, A.; FERNÁNDEZ-ESCAMILLA, V.V.A.; URIBE-CALDERON, J. 2018. Production and Modification of Cellulose Nanocrystals from Agave tequilana Weber Waste and Its Effect on the Melt Rheology of PLA. International Journal of Polymer Science. https://doi.org/10.1155/2018/3567901
ILYAS, R.A.; SAPUAN, S.M.; ISHAK, M.R. 2018. Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohydrate Polymers. 181:1038-1051. https://doi.org/10.1016/j.carbpol.2017.11.045
HERRERA, M.; SINCHE, L.; BONILLA, O. 2019. Obtención de Nanocelulosa a partir de Celulosa de Puntas de Abacá. Afinidad. 76(586).
HAFID, H.S.; OMAR, F.N.; ZHU, J.; WAKISAKA, M. 2021. Enhanced crystallinity and thermal properties of cellulose from rice husk using acid hydrolysis treatment. Carbohydrate Polymers. 260:117789. https://doi.org/10.1016/j.carbpol.2021.117789
GARCÍA, R.; GULIYEV, V.; TANUNCHAI, B.; UDOVENKO, M.; MENYAILO, O.; GLASER, B.; PURAHONG, W.; BUSCOT, F.; BLAGODATSKAYA, E. 2023. Degradation of bio-based and biodegradable plastic and its contribution to soil organic carbon stock. Polymers. 15(3):660 https://doi.org/10.3390/polym15030660
FROSCHAUER, C.; HUMMEL, M.; IAKOVLEV, M.; ROSELLI, A.; SCHOTTENBERGER, H.; SIXTA, H. 2013. Separation of hemicellulose and cellulose from wood pulp by means of ionic liquid/cosolvent systems. Biomacromolecules. 14(6):1741-1750. https://doi.org/10.1021/bm400106h
ESPITIA-BAENA, J.E.; DURAN-SANDOVAL, H.R.; FANDIÑO-FRANKY, J.; DÍAZ-CASTILLO, F.; GÓMEZ-ESTRADA, H.A. 2011. Química y biología del extracto etanólico del epicarpio de Crescentia cujete L. (totumo). Revista Cubana de Plantas Medicinales. 16(4):337-346.
EL ACHABY, M.; KASSAB, Z.; BARAKAT, A.; ABOULKAS, A. 2018. Alfa fibers as viable sustainable source for cellulose nanocrystals extraction: Application for improving the tensile properties of biopolymer nanocomposite films. Industrial Crops and Products. 112:499-510. https://doi.org/10.1016/j.indcrop.2017.12.049
DEBIAGI, F.; FARIA-TISCHER, P.C.S.; MALI, S. 2020. Nanofibrillated cellulose obtained from soybean hull using simple and eco-friendly processes based on reactive extrusion. Cellulose. 27(4):1975-1988. https://doi.org/10.1007/s10570-019-02893-0
DE OLIVEIRA, J.P.; BRUNI, G.P.; MELLO EL HALAL, S.L.; BERTOLDI, F.C.; GUERRA DIAS, A.R.; ZAVAREZE, E. 2019. Cellulose nanocrystals from rice and oat husks and their application in aerogels for food packaging. International Journal of Biological Macromolecules. 124:175-184. https://doi.org/10.1016/j.ijbiomac.2018.11.205
OVALLE-SERRANO, S.A.; BLANCO-TIRADO, C.; COMBARIZA, M.Y. 2018. Exploring the composition of raw and delignified Colombian fique fibers, tow and pulp. Cellulose. 25(1):51-165. https://doi.org/10.1007/s10570-017-1599-9
PELISSARI, F.M.; DO AMARAL SOBRAL, P.J.; MENEGALLI, F.C. 2014. Isolation and characterization of cellulose nanofibers from banana peels. Cellulose. 21(1):417-432. https://doi.org/10.1007/s10570-013-0138-6
CAMPOS DE BOMFIM, A.S.; DE OLIVEIRA, D.M.; WALLING, E.; BABIN, A.; HERSANT, G.; VANEECKHAUTE, C.; DUMONT, M.J.; RODRIGUE, D. 2022. Spent Coffee Grounds Characterization and Reuse in Composting and Soil Amendment. Waste. 1(1):220. https://doi.org/10.3390/waste1010002
ZIELIŃSKA, D.; SZENTNER, K.; WAŚKIEWICZ, A.; BORYSIAK, S. 2021. Production of nanocellulose by enzymatic treatment for application in polymer composites. Materials. 14(9):2124. https://doi.org/10.3390/ma14092124
Text
http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_1843
http://purl.org/coar/resource_type/c_6501
info:eu-repo/semantics/article
ZHANG, J.; LUO, N.; WAN, J.; XIA, G.; YU, J.; HE, J.; ZHANG, J. 2017. Directly converting agricultural straw into all-biomass nanocomposite films reinforced with additional in situ-retained cellulose nanocrystals. ACS Sustainable Chemistry & Engineering. 5(6):5127-5133. https://doi.org/10.1021/acssuschemeng.7b00488
YUNUS, M.A. 2019. Extraction cellulose from rice husk. Jurnal Akta Kimia Indonesia. 12(2):79. https://doi.org/10.20956/ica.v12i2.6559
PESCOD, M.B.; DENNY, P. 2010. Environmental management for cocoa production: a training manual for cocoa farmers. Environmental Science and Health, Part B. 45:48-56. https://doi.org/10.1080/03601230903400602
THI THUY VAN, N.; GASPILLO, PAG-ASA.; THANH, H.G.T.; NHI, N.H.T.; LONG, H.N.; TRI, N.; THI TRUC VAN, N.; NGUYEN, TIEN-THANH.; KY PHUONG HA, H. 2022. Cellulose from the banana stem: optimization of extraction by response surface methodology (RSM) and charaterization. Heliyon. 8(12):e11845. https://doi.org/10.1016/j.heliyon.2022.e11845
TANPICHAI, S.; WITAYAKRAN, S.; BOONMAHITTHISUD, A. 2019. Study on structural and thermal properties of cellulose microfibers isolated from pineapple leaves using steam explosion. Journal of Environmental Chemical Engineering. 7(1):102836. https://doi.org/10.1016/j.jece.2018.102836
SHAFAWATI, S.N.; SIDDIQUEE, S. 2013. Composting of oil palm fibres and Trichoderma spp. As the biological control agent: A review. International Biodeterioration and Biodegradation. 85:243-253. https://doi.org/10.1016/j.ibiod.2013.08.005
SEDDIQI, H.; OLIAEI, E.; HONARKAR, H.; JIN, J.; GEONZON, L.C.; BACABAC, R.G.; KLEIN-NULEND, J. 2021. Cellulose and its derivatives: towards biomedical applications. In Cellulose. 28(4):1893-1931. https://doi.org/10.1007/s10570-020-03674-w
SANDOVAL ARREOLA, M.M.; GALEANA GONZÁLEZ, E.J.; ROQUE BARBOSA, L.E.; ORTIZ RODRÍGUEZ, G. 2022. Extracción y caracterización de celulosa a partir de la planta del plátano. Brazilian Journal of Development. 8(12):78810-78819. https://doi.org/10.34117/bjdv8n12-130
ROSA, M.F.; MEDEIROS, E.S.; MALMONGE, J. A.; GREGORSKI, K.S.; WOOD, D.F.; MATTOSO, L.H.C.; GLENN, G.; ORTS, W.J.; IMAM, S.H. 2010. Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers. 81(1):83-92. https://doi.org/10.1016/j.carbpol.2010.01.059
RODRIGUEZ, A. 2012. Biodegradabilidad de materiales bioplásticos. Ciencia y Tecnología de Alimentos. 22(3):69-72.
PUTTASWAMY, M.; SRINIKETHAN, G.; SHETTY, V.K. 2017. Biocomposite composed of PVA reinforced with cellulose microfibers isolated from biofuel industrial dissipate: Jatropha Curcus L. seed shell. Journal of Environmental Chemical Engineering. 5(2):1990-1997. https://doi.org/10.1016/j.jece.2017.04.004
PRABHAVATHI, N.; RAMAKRISHNA PARAMA, V.R. 2019. Effect of sugar industry solid waste pressmud and bio compost on soil physical and chemical properties at different intervals during finger millet crop. Journal of Pharmacognosy and Phytochemistry Pressmud. 8(3):3038-3042.
DE DIOS NARANJO, C.; ALAMILLA-BELTRÁN, L.; GUTIÉRREZ-LOPEZ, G.F.; TERRES-ROJAS, E.; SOLORZA-FERIA, J.; YEE-MADEIRA, H.T.; FLORES-MORALES, A.; MORA-ESCOBEDO, R. 2017. Aislamiento y caracterización de celulosas obtenidas de fibras de Agave salmiana aplicando dos métodos de extracción ácido-alcali. Revista Mexicana de Ciencias Agrícolas. 7(1):31-43.
BALOGUN, F.O.; SABIU, S. 2021. A Review of the phytochemistry, ethnobotany, toxicology, and pharmacological potentials of Crescentia cujete L. (Bignoniaceae). Evidence-Based Complementary and Alternative Medicine. 2021:6683708. https://doi.org/10.1155/2021/6683708
BAHLOUL, A.; KASSAB, Z.; EL BOUCHTI, M.; HANNACHE, H.; QAISS, A.E.K.; OUMAM, M.; EL ACHABY, M. 2021. Micro- and nano-structures of cellulose from eggplant plant Solanum melongena L agricultural residue. Carbohydrate Polymers. 253:117311 https://doi.org/10.1016/j.carbpol.2020.117311
Polímeros biodegradables
text/xml
Artículo de revista
Núm. 2 , Año 2023 :Revista U.D.C.A Actualidad & Divulgación Científica. Julio-Diciembre
2
26
Residuo lignocelulósico
Materiales alternativos
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
Celulosa
Bioplástico
Muñoz-Chaves, Javier Andres
Ibarra-Sanchez, Sandro Alberto
Castillo, Yineer Alexis
Sánchez-Aguilar, Raúl Fernando
Actualmente, se reconoce que los plásticos derivados de productos petroquímicos son uno de los mayores problemas sociales y ambientales, debido al uso excesivo y a la dificultad de su descomposición, lo que ha aumentado la preocupación por encontrar alternativas a estos materiales. De esta forma, este trabajo se centra en la caracterización por medio de DRX, FRX FTIR, DSC, TGA y análisis cualitativo de biodegradabilidad del fruto de Crescentia cujete (totumo), a fin de establecer bases para ser considerado una alternativa de uso, como polímero biodegradable. Los resultados de la caracterización estructural evidenciaron que se trata de un material semicristalino, compuesto, principalmente, de celulosa tipo I, con una cristalinidad del 29 %. Se determinó que la estabilidad térmica de este material alcanza los 175 °C, con la pérdida de humedad, siendo la única observación hasta esta temperatura. Se confirmó la presencia de hemicelulosa y celulosa a temperaturas superiores y su posterior descomposición. El estudio de biodegradabilidad indicó la presencia de un ataque microbiano a las 72 horas de monitoreo, evidenciado por la aparición de un hongo en la superficie del material, lo que causó cambios en la emisión de dióxido de carbono y monóxido de carbono. Después de 200 horas se observó una disminución del volumen del hongo, lo que sugiere que este se propagó al interior del material, dando origen puntos negros de descomposición en la superficie de las muestras. Así, el totumo se podría considerar como una alternativa de material lignocelulósico, para la preparación de materiales poliméricos biodegradables.
application/pdf
Publication
Revista U.D.C.A Actualidad & Divulgación Científica
Raúl Fernando Sánchez-Aguilar, Yineer Alexis Castillo, Sandro Alberto Ibarra-Sanchez, Javier Andres Muñoz-Chaves - 2023
ARAÚJO, D.; CASTRO, M.C.R.; FIGUEIREDO, A.; VILARINHO, M.; MACHADO, A. 2020. Green synthesis of cellulose acetate from corncob: Physicochemical properties and assessment of environmental impacts. Journal of Cleaner Production. 260:120865 https://doi.org/10.1016/j.jclepro.2020.120865
https://revistas.udca.edu.co/index.php/ruadc/article/view/2398
ARANGO-ULLOA, J.; BOHORQUEZ, A.; DUQUE, M.C.; MAASS, B.L. 2009. Diversity of the calabash tree (Crescentia cujete L.) in Colombia. Agroforestry Systems. 76(3):543-553. https://doi.org/10.1007/s10457-009-9207-0
AMERICAN SOCIETY FOR TESTING AND MATERIALS, ASTM. 1994. Standard test method for determination of relative haze of high-transmission plastics (ASTM D5488-94).
AMALRAJ, A.; GOPI, S.; THOMAS, S.; HAPONIUK, J.T. 2018. Cellulose Nanomaterials in Biomedical, Food, and Nutraceutical Applications: A Review. Macromolecular Symposia. 380(1):1-9. https://doi.org/10.1002/masy.201800115
ÁLZATE CARVAJAL, E.; QUINTERO CASTAÑO, V.D.; LUCAS AGUIRRE, J.C. 2013. Determinación de las propiedades térmicas y composicionales de la harina y almidón de chachafruto (Erytina edulis Triana ex Micheli). Temas Agrarios. 18(2):21-35. https://doi.org/10.21897/rta.v18i2.714
ALEMDAR, A.; SAIN, M. 2008. Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Composites Science and Technology. 68(2):557–565. https://doi.org/10.1016/j.compscitech.2007.05.044
Español
http://creativecommons.org/licenses/by-nc/4.0
AHVENAINEN, P.; KONTRO, I.; SVEDSTRÖM, K. 2016. Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose. 23(2):1073-1086. https://doi.org/10.1007/s10570-016-0881-6
ACQUAVIA, M.A.; PASCALE, R.; MARTELLI, G.; BONDONI, M.; BIANCO, G. 2021. Natural polymeric materials: A solution to plastic pollution from the agro-food sector. Polymers. 13(1):1-39. https://doi.org/10.3390/polym13010158
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Currently, it is recognized that plastics derived from petrochemicals are one of the biggest social and environmental problems due to their excessive use and difficulty in decomposition, which has increased the concern to find alternatives to these materials. This study characterizes the fruit of Crescentia cujete (calabash tree) as a biodegradable polymer through DRX, FTIR, DSC, TGA, and qualitative biodegradability analysis. The structural characterization revealed a semi-crystalline material composed mainly of type I cellulose, with a crystallinity of 29 %. The material's thermal stability was determined to be up to 175 °C, with moisture loss being the only observation at this temperature. The presence of hemicellulose and cellulose at higher temperatures and their subsequent decomposition were confirmed. The biodegradability study indicated the presence of microbial attack at 72 hours of monitoring, evidenced by the appearance of a fungus on the material surface, causing changes in CO2 and CO emissions. After 200 hours, a decrease in the volume of the fungus was observed, suggesting that it spread inside the material, giving rise to black spots of decomposition on the surface of the samples. Thus, calabash tree could be considered as an alternative lignocellulosic material for the preparation of biodegradable polymeric materials.
Biodegradable polymer
Alternative materials
Bio-plastic
Cellulose
Lignocellulosic waste
Journal article
Structural, thermal and morphological characterization of Crescentia cujete (totumo) with potential use as biodegradable polymer
0123-4226
https://revistas.udca.edu.co/index.php/ruadc/article/download/2398/2803
https://revistas.udca.edu.co/index.php/ruadc/article/download/2398/2821
https://doi.org/10.31910/rudca.v26.n2.2023.2398
10.31910/rudca.v26.n2.2023.2398
2023-12-31T00:00:00Z
2023-12-31
2619-2551
2023-12-31T00:00:00Z
institution UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDECIENCIASAPLICADASYAMBIENTALES/logo.png
country_str Colombia
collection Revista U.D.C.A Actualidad & Divulgación Científica
title Caracterización estructural, térmica y morfológica de Crescentia cujete (totumo) con potencial uso como polímero biodegradable
spellingShingle Caracterización estructural, térmica y morfológica de Crescentia cujete (totumo) con potencial uso como polímero biodegradable
Muñoz-Chaves, Javier Andres
Ibarra-Sanchez, Sandro Alberto
Castillo, Yineer Alexis
Sánchez-Aguilar, Raúl Fernando
Polímeros biodegradables
Residuo lignocelulósico
Materiales alternativos
Celulosa
Bioplástico
Biodegradable polymer
Alternative materials
Bio-plastic
Cellulose
Lignocellulosic waste
title_short Caracterización estructural, térmica y morfológica de Crescentia cujete (totumo) con potencial uso como polímero biodegradable
title_full Caracterización estructural, térmica y morfológica de Crescentia cujete (totumo) con potencial uso como polímero biodegradable
title_fullStr Caracterización estructural, térmica y morfológica de Crescentia cujete (totumo) con potencial uso como polímero biodegradable
title_full_unstemmed Caracterización estructural, térmica y morfológica de Crescentia cujete (totumo) con potencial uso como polímero biodegradable
title_sort caracterización estructural, térmica y morfológica de crescentia cujete (totumo) con potencial uso como polímero biodegradable
title_eng Structural, thermal and morphological characterization of Crescentia cujete (totumo) with potential use as biodegradable polymer
description Actualmente, se reconoce que los plásticos derivados de productos petroquímicos son uno de los mayores problemas sociales y ambientales, debido al uso excesivo y a la dificultad de su descomposición, lo que ha aumentado la preocupación por encontrar alternativas a estos materiales. De esta forma, este trabajo se centra en la caracterización por medio de DRX, FRX FTIR, DSC, TGA y análisis cualitativo de biodegradabilidad del fruto de Crescentia cujete (totumo), a fin de establecer bases para ser considerado una alternativa de uso, como polímero biodegradable. Los resultados de la caracterización estructural evidenciaron que se trata de un material semicristalino, compuesto, principalmente, de celulosa tipo I, con una cristalinidad del 29 %. Se determinó que la estabilidad térmica de este material alcanza los 175 °C, con la pérdida de humedad, siendo la única observación hasta esta temperatura. Se confirmó la presencia de hemicelulosa y celulosa a temperaturas superiores y su posterior descomposición. El estudio de biodegradabilidad indicó la presencia de un ataque microbiano a las 72 horas de monitoreo, evidenciado por la aparición de un hongo en la superficie del material, lo que causó cambios en la emisión de dióxido de carbono y monóxido de carbono. Después de 200 horas se observó una disminución del volumen del hongo, lo que sugiere que este se propagó al interior del material, dando origen puntos negros de descomposición en la superficie de las muestras. Así, el totumo se podría considerar como una alternativa de material lignocelulósico, para la preparación de materiales poliméricos biodegradables.
description_eng Currently, it is recognized that plastics derived from petrochemicals are one of the biggest social and environmental problems due to their excessive use and difficulty in decomposition, which has increased the concern to find alternatives to these materials. This study characterizes the fruit of Crescentia cujete (calabash tree) as a biodegradable polymer through DRX, FTIR, DSC, TGA, and qualitative biodegradability analysis. The structural characterization revealed a semi-crystalline material composed mainly of type I cellulose, with a crystallinity of 29 %. The material's thermal stability was determined to be up to 175 °C, with moisture loss being the only observation at this temperature. The presence of hemicellulose and cellulose at higher temperatures and their subsequent decomposition were confirmed. The biodegradability study indicated the presence of microbial attack at 72 hours of monitoring, evidenced by the appearance of a fungus on the material surface, causing changes in CO2 and CO emissions. After 200 hours, a decrease in the volume of the fungus was observed, suggesting that it spread inside the material, giving rise to black spots of decomposition on the surface of the samples. Thus, calabash tree could be considered as an alternative lignocellulosic material for the preparation of biodegradable polymeric materials.
author Muñoz-Chaves, Javier Andres
Ibarra-Sanchez, Sandro Alberto
Castillo, Yineer Alexis
Sánchez-Aguilar, Raúl Fernando
author_facet Muñoz-Chaves, Javier Andres
Ibarra-Sanchez, Sandro Alberto
Castillo, Yineer Alexis
Sánchez-Aguilar, Raúl Fernando
topicspa_str_mv Polímeros biodegradables
Residuo lignocelulósico
Materiales alternativos
Celulosa
Bioplástico
topic Polímeros biodegradables
Residuo lignocelulósico
Materiales alternativos
Celulosa
Bioplástico
Biodegradable polymer
Alternative materials
Bio-plastic
Cellulose
Lignocellulosic waste
topic_facet Polímeros biodegradables
Residuo lignocelulósico
Materiales alternativos
Celulosa
Bioplástico
Biodegradable polymer
Alternative materials
Bio-plastic
Cellulose
Lignocellulosic waste
citationvolume 26
citationissue 2
citationedition Núm. 2 , Año 2023 :Revista U.D.C.A Actualidad & Divulgación Científica. Julio-Diciembre
publisher Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
ispartofjournal Revista U.D.C.A Actualidad & Divulgación Científica
source https://revistas.udca.edu.co/index.php/ruadc/article/view/2398
language Español
format Article
rights http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
Raúl Fernando Sánchez-Aguilar, Yineer Alexis Castillo, Sandro Alberto Ibarra-Sanchez, Javier Andres Muñoz-Chaves - 2023
http://creativecommons.org/licenses/by-nc/4.0
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
references KASSAB, Z.; ABDELLAOUI, Y.; SALIM, M.H.; EL ACHABY, M. 2020a. Cellulosic materials from pea (Pisum Sativum) and broad beans (Vicia Faba) pods agro-industrial residues. Materials Letters. 280:128539 https://doi.org/10.1016/j.matlet.2020.128539
ORGANIZACIÓN DE LAS NACIONES UNIDAS, ONU. 2018. O nos divorciamos del plástico, o nos olvidamos del planeta. Noticias ONU. Disponible desde Internet en: https://news.un.org/es/story/2018/06/1435111
NKOSIVELE, Z.; MZIMELA, T.; LINGANISO, L.Z.; REVAPRASADU, N.; MOTAUNG, T.E. 2018. Comparison of Cellulose Extraction from Sugarcane Bagasse Through Alkali 3 . Results and Discussion. Materials Research. 21(6):7. https://doi.org/10.1590/1980-5373-MR-2017-0750
MENESES, J.; CORRALES, C.; VALENCIA, M. 2007. Síntesis y caracterización de un polímero biodegradable a partir del almidón de yuca. Revista EIA. 8(5):57-67.
LONG, D.A. 2004. Infrared and Raman characteristic group frequencies. Tables and chartsGeorge Socrates John Wiley and Sons, Ltd, Chichester, Third Edition, 2001. Price £135. Journal of Raman Spectroscopy. 35(10):905-905. https://doi.org/10.1002/jrs.1238
LIN, Q.; HUANG, Y.; YU, W. 2020. An in-depth study of molecular and supramolecular structures of bamboo cellulose upon heat treatment. Carbohydrate Polymers. 241:116412. https://doi.org/10.1016/j.carbpol.2020.116412
LAM, N.T.; CHOLLAKUP, R.; SMITTHIPONG, W.; NIMCHUA, T.; SUKYAI, P. 2017. Characterization of cellulose nanocrystals extracted from sugarcane bagasse for potential biomedical materials. Sugar Tech. 19(5):539-552. https://doi.org/10.1007/s12355-016-0507-1
KASSAB, Z.; SYAFRI, E.; TAMRAOUI, Y.; HANNACHE, H.; EL KACEM QAISS, A.; EL ACHABY, M. 2020c. Characteristics of sulfated and carboxylated cellulose nanocrystals extracted from Juncus plant stems. International Journal of Biological Macromolecules. 154:1419-1425. https://doi.org/10.1016/j.ijbiomac.2019.11.023
KASSAB, Z.; KASSEM, I.; HANNACHE, H.; BOUHFID, R.; QAISS, A.E.K.; EL ACHABY, M. 2020b. Tomato plant residue as new renewable source for cellulose production: extraction of cellulose nanocrystals with different surface functionalities. Cellulose. 27(8)4287-4303. https://doi.org/10.1007/s10570-020-03097-7
JOHARI, A.P.; KURMVANSHI, S.K.; MOHANTY, S.; NAYAK, S.K. 2016. Influence of surface modified cellulose microfibrils on the improved mechanical properties of poly (lactic acid). International Journal of Biological Macromolecules. 84:329-339. https://doi.org/10.1016/j.ijbiomac.2015.12.038
PECH-COHUO, S.C.; CANCHE-ESCAMILLA, G.; VALADEZ-GONZÁLEZ, A.; FERNÁNDEZ-ESCAMILLA, V.V.A.; URIBE-CALDERON, J. 2018. Production and Modification of Cellulose Nanocrystals from Agave tequilana Weber Waste and Its Effect on the Melt Rheology of PLA. International Journal of Polymer Science. https://doi.org/10.1155/2018/3567901
ILYAS, R.A.; SAPUAN, S.M.; ISHAK, M.R. 2018. Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohydrate Polymers. 181:1038-1051. https://doi.org/10.1016/j.carbpol.2017.11.045
HERRERA, M.; SINCHE, L.; BONILLA, O. 2019. Obtención de Nanocelulosa a partir de Celulosa de Puntas de Abacá. Afinidad. 76(586).
HAFID, H.S.; OMAR, F.N.; ZHU, J.; WAKISAKA, M. 2021. Enhanced crystallinity and thermal properties of cellulose from rice husk using acid hydrolysis treatment. Carbohydrate Polymers. 260:117789. https://doi.org/10.1016/j.carbpol.2021.117789
GARCÍA, R.; GULIYEV, V.; TANUNCHAI, B.; UDOVENKO, M.; MENYAILO, O.; GLASER, B.; PURAHONG, W.; BUSCOT, F.; BLAGODATSKAYA, E. 2023. Degradation of bio-based and biodegradable plastic and its contribution to soil organic carbon stock. Polymers. 15(3):660 https://doi.org/10.3390/polym15030660
FROSCHAUER, C.; HUMMEL, M.; IAKOVLEV, M.; ROSELLI, A.; SCHOTTENBERGER, H.; SIXTA, H. 2013. Separation of hemicellulose and cellulose from wood pulp by means of ionic liquid/cosolvent systems. Biomacromolecules. 14(6):1741-1750. https://doi.org/10.1021/bm400106h
ESPITIA-BAENA, J.E.; DURAN-SANDOVAL, H.R.; FANDIÑO-FRANKY, J.; DÍAZ-CASTILLO, F.; GÓMEZ-ESTRADA, H.A. 2011. Química y biología del extracto etanólico del epicarpio de Crescentia cujete L. (totumo). Revista Cubana de Plantas Medicinales. 16(4):337-346.
EL ACHABY, M.; KASSAB, Z.; BARAKAT, A.; ABOULKAS, A. 2018. Alfa fibers as viable sustainable source for cellulose nanocrystals extraction: Application for improving the tensile properties of biopolymer nanocomposite films. Industrial Crops and Products. 112:499-510. https://doi.org/10.1016/j.indcrop.2017.12.049
DEBIAGI, F.; FARIA-TISCHER, P.C.S.; MALI, S. 2020. Nanofibrillated cellulose obtained from soybean hull using simple and eco-friendly processes based on reactive extrusion. Cellulose. 27(4):1975-1988. https://doi.org/10.1007/s10570-019-02893-0
DE OLIVEIRA, J.P.; BRUNI, G.P.; MELLO EL HALAL, S.L.; BERTOLDI, F.C.; GUERRA DIAS, A.R.; ZAVAREZE, E. 2019. Cellulose nanocrystals from rice and oat husks and their application in aerogels for food packaging. International Journal of Biological Macromolecules. 124:175-184. https://doi.org/10.1016/j.ijbiomac.2018.11.205
OVALLE-SERRANO, S.A.; BLANCO-TIRADO, C.; COMBARIZA, M.Y. 2018. Exploring the composition of raw and delignified Colombian fique fibers, tow and pulp. Cellulose. 25(1):51-165. https://doi.org/10.1007/s10570-017-1599-9
PELISSARI, F.M.; DO AMARAL SOBRAL, P.J.; MENEGALLI, F.C. 2014. Isolation and characterization of cellulose nanofibers from banana peels. Cellulose. 21(1):417-432. https://doi.org/10.1007/s10570-013-0138-6
CAMPOS DE BOMFIM, A.S.; DE OLIVEIRA, D.M.; WALLING, E.; BABIN, A.; HERSANT, G.; VANEECKHAUTE, C.; DUMONT, M.J.; RODRIGUE, D. 2022. Spent Coffee Grounds Characterization and Reuse in Composting and Soil Amendment. Waste. 1(1):220. https://doi.org/10.3390/waste1010002
ZIELIŃSKA, D.; SZENTNER, K.; WAŚKIEWICZ, A.; BORYSIAK, S. 2021. Production of nanocellulose by enzymatic treatment for application in polymer composites. Materials. 14(9):2124. https://doi.org/10.3390/ma14092124
ZHANG, J.; LUO, N.; WAN, J.; XIA, G.; YU, J.; HE, J.; ZHANG, J. 2017. Directly converting agricultural straw into all-biomass nanocomposite films reinforced with additional in situ-retained cellulose nanocrystals. ACS Sustainable Chemistry & Engineering. 5(6):5127-5133. https://doi.org/10.1021/acssuschemeng.7b00488
YUNUS, M.A. 2019. Extraction cellulose from rice husk. Jurnal Akta Kimia Indonesia. 12(2):79. https://doi.org/10.20956/ica.v12i2.6559
PESCOD, M.B.; DENNY, P. 2010. Environmental management for cocoa production: a training manual for cocoa farmers. Environmental Science and Health, Part B. 45:48-56. https://doi.org/10.1080/03601230903400602
THI THUY VAN, N.; GASPILLO, PAG-ASA.; THANH, H.G.T.; NHI, N.H.T.; LONG, H.N.; TRI, N.; THI TRUC VAN, N.; NGUYEN, TIEN-THANH.; KY PHUONG HA, H. 2022. Cellulose from the banana stem: optimization of extraction by response surface methodology (RSM) and charaterization. Heliyon. 8(12):e11845. https://doi.org/10.1016/j.heliyon.2022.e11845
TANPICHAI, S.; WITAYAKRAN, S.; BOONMAHITTHISUD, A. 2019. Study on structural and thermal properties of cellulose microfibers isolated from pineapple leaves using steam explosion. Journal of Environmental Chemical Engineering. 7(1):102836. https://doi.org/10.1016/j.jece.2018.102836
SHAFAWATI, S.N.; SIDDIQUEE, S. 2013. Composting of oil palm fibres and Trichoderma spp. As the biological control agent: A review. International Biodeterioration and Biodegradation. 85:243-253. https://doi.org/10.1016/j.ibiod.2013.08.005
SEDDIQI, H.; OLIAEI, E.; HONARKAR, H.; JIN, J.; GEONZON, L.C.; BACABAC, R.G.; KLEIN-NULEND, J. 2021. Cellulose and its derivatives: towards biomedical applications. In Cellulose. 28(4):1893-1931. https://doi.org/10.1007/s10570-020-03674-w
SANDOVAL ARREOLA, M.M.; GALEANA GONZÁLEZ, E.J.; ROQUE BARBOSA, L.E.; ORTIZ RODRÍGUEZ, G. 2022. Extracción y caracterización de celulosa a partir de la planta del plátano. Brazilian Journal of Development. 8(12):78810-78819. https://doi.org/10.34117/bjdv8n12-130
ROSA, M.F.; MEDEIROS, E.S.; MALMONGE, J. A.; GREGORSKI, K.S.; WOOD, D.F.; MATTOSO, L.H.C.; GLENN, G.; ORTS, W.J.; IMAM, S.H. 2010. Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers. 81(1):83-92. https://doi.org/10.1016/j.carbpol.2010.01.059
RODRIGUEZ, A. 2012. Biodegradabilidad de materiales bioplásticos. Ciencia y Tecnología de Alimentos. 22(3):69-72.
PUTTASWAMY, M.; SRINIKETHAN, G.; SHETTY, V.K. 2017. Biocomposite composed of PVA reinforced with cellulose microfibers isolated from biofuel industrial dissipate: Jatropha Curcus L. seed shell. Journal of Environmental Chemical Engineering. 5(2):1990-1997. https://doi.org/10.1016/j.jece.2017.04.004
PRABHAVATHI, N.; RAMAKRISHNA PARAMA, V.R. 2019. Effect of sugar industry solid waste pressmud and bio compost on soil physical and chemical properties at different intervals during finger millet crop. Journal of Pharmacognosy and Phytochemistry Pressmud. 8(3):3038-3042.
DE DIOS NARANJO, C.; ALAMILLA-BELTRÁN, L.; GUTIÉRREZ-LOPEZ, G.F.; TERRES-ROJAS, E.; SOLORZA-FERIA, J.; YEE-MADEIRA, H.T.; FLORES-MORALES, A.; MORA-ESCOBEDO, R. 2017. Aislamiento y caracterización de celulosas obtenidas de fibras de Agave salmiana aplicando dos métodos de extracción ácido-alcali. Revista Mexicana de Ciencias Agrícolas. 7(1):31-43.
BALOGUN, F.O.; SABIU, S. 2021. A Review of the phytochemistry, ethnobotany, toxicology, and pharmacological potentials of Crescentia cujete L. (Bignoniaceae). Evidence-Based Complementary and Alternative Medicine. 2021:6683708. https://doi.org/10.1155/2021/6683708
BAHLOUL, A.; KASSAB, Z.; EL BOUCHTI, M.; HANNACHE, H.; QAISS, A.E.K.; OUMAM, M.; EL ACHABY, M. 2021. Micro- and nano-structures of cellulose from eggplant plant Solanum melongena L agricultural residue. Carbohydrate Polymers. 253:117311 https://doi.org/10.1016/j.carbpol.2020.117311
ARAÚJO, D.; CASTRO, M.C.R.; FIGUEIREDO, A.; VILARINHO, M.; MACHADO, A. 2020. Green synthesis of cellulose acetate from corncob: Physicochemical properties and assessment of environmental impacts. Journal of Cleaner Production. 260:120865 https://doi.org/10.1016/j.jclepro.2020.120865
ARANGO-ULLOA, J.; BOHORQUEZ, A.; DUQUE, M.C.; MAASS, B.L. 2009. Diversity of the calabash tree (Crescentia cujete L.) in Colombia. Agroforestry Systems. 76(3):543-553. https://doi.org/10.1007/s10457-009-9207-0
AMERICAN SOCIETY FOR TESTING AND MATERIALS, ASTM. 1994. Standard test method for determination of relative haze of high-transmission plastics (ASTM D5488-94).
AMALRAJ, A.; GOPI, S.; THOMAS, S.; HAPONIUK, J.T. 2018. Cellulose Nanomaterials in Biomedical, Food, and Nutraceutical Applications: A Review. Macromolecular Symposia. 380(1):1-9. https://doi.org/10.1002/masy.201800115
ÁLZATE CARVAJAL, E.; QUINTERO CASTAÑO, V.D.; LUCAS AGUIRRE, J.C. 2013. Determinación de las propiedades térmicas y composicionales de la harina y almidón de chachafruto (Erytina edulis Triana ex Micheli). Temas Agrarios. 18(2):21-35. https://doi.org/10.21897/rta.v18i2.714
ALEMDAR, A.; SAIN, M. 2008. Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Composites Science and Technology. 68(2):557–565. https://doi.org/10.1016/j.compscitech.2007.05.044
AHVENAINEN, P.; KONTRO, I.; SVEDSTRÖM, K. 2016. Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose. 23(2):1073-1086. https://doi.org/10.1007/s10570-016-0881-6
ACQUAVIA, M.A.; PASCALE, R.; MARTELLI, G.; BONDONI, M.; BIANCO, G. 2021. Natural polymeric materials: A solution to plastic pollution from the agro-food sector. Polymers. 13(1):1-39. https://doi.org/10.3390/polym13010158
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_1843
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2023-12-31
date_accessioned 2023-12-31T00:00:00Z
date_available 2023-12-31T00:00:00Z
url https://revistas.udca.edu.co/index.php/ruadc/article/view/2398
url_doi https://doi.org/10.31910/rudca.v26.n2.2023.2398
issn 0123-4226
eissn 2619-2551
doi 10.31910/rudca.v26.n2.2023.2398
url4_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/download/2398/2803
url2_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/download/2398/2821
_version_ 1797159868481667072