Impacto en la salud causado por los nanoplásticos contenidos en alimentos y su posible atenuación mediante un proceso de bioingeniería

A través de los siglos, las poblaciones de seres humanos asentadas en los alrededoresde a�luentes hídricos han dispuesto indiscriminadamente sus desechos arrojándolosa los ríos, lagos, océanos, y terrenos aledaños. Cuando las cantidades de desechos, ensu mayoría biodegradables son bajas, las consecuencias ambientales y sobre la saludde las comunidades bióticas son mínimas. Sin embargo, la fabricación y disposiciónen masa de materiales sintéticos no biodegradables desde mediados del siglo XX hatenido profundos efectos biológicos y ambientales. Los plásticos son el ejemplo mássigni�icativo de estos ubicuos materiales sintéticos, usualmente de un solo uso, nobiodegradables y con altas cantidades de aditivos químicos tóxicos. Debido a la altaes... Ver más

Guardado en:

1794-1237

2463-0950

21

2024-01-01

4103 pp. 1

60

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

Revista EIA - 2023

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

id 3be88f50a0630a362268197cd57e2fa7
record_format ojs
spelling Impacto en la salud causado por los nanoplásticos contenidos en alimentos y su posible atenuación mediante un proceso de bioingeniería
Moskat M., C. Bianco, F Isso, M. Vazquez; E. Corradi 2021 Plastics industry and market in Latin America and Caribbean April Plastics Industry and Market in Latin America and the Caribbean.docx - Documentos de Google Mushtaq G, Khan JA, Joseph E, Kamal MA. Nanoparticles, Neurotoxicity and neurodegenerative Diseases. Curr Drug Metab. 2015;16(8):676-84. doi: 10.2174/1389200216666150812122302. PMID: 26264205.
Liufu, SC, HN Xiao y YP Li, 2005.Adsorción de polielectrolito catiónico en la interfase sólido/líquido y dispersión de sílice nanométrica en agua. J. Col. Interfaz Sci., 285: 33-40.
Liu S, Lin G, Liu X, Yang R, Wang H, Sun Y, Chen B, Dong R. 2022. Detection of various microplastics in placentas, meconium, infant feces, breastmilk and infant formula: A pilot prospective study. Sci Total Environ. doi: 10.1016/j.scitotenv.2022.158699. Epub ahead of print. PMID: 36108868. Luo, Z; Zhou, X; Su, Y; Wang, H; Yu, R; Zhou, S; Genbo Xu, E; Xing, B. Environmental occurrence, fate, impact, and potential solution of tire microplastics: Similarities and differences with tire wear particles. 2021. Science of The Total Environment, Volume 795, 148902, ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2021.148902. https://www.sciencedirect.com/science/article/pii/S0048969721039747.
Luo, Y; Awoyemi, O; Naidu, R; Fang, C. 2023. Detection of microplastics and nanoplastics released from a kitchen blender using Raman imaging, Journal of Hazardous Materials, Volume 453, 131403, ISSN 0304-3894. https://doi.org/10.1016/j.jhazmat.2023.131403. https://www.sciencedirect.com/science/article/pii/S0304389423006866
Zbyszewski, M; Patricia, L; Corcoran, Alexandra Hockin. Comparison of the distribution and degradation of plastic debris along shorelines of the Great Lakes, North America, Journal of Great Lakes Research 2014. Vol 40, Issue 2, Pág. 288-299, ISSN 0380-1330, https://doi.org/10.1016/j.jglr.2014.02.012. (https://www.sciencedirect.com/science/article/pii/S038013301400046X)
Manfredini, N; Ilare, J Invernizzi, M; Polvara, E; Contreras, D; Sironi, S; Moscatelli, Davide & Sponchioni, Mattia. Polymer Nanoparticles for the Release of Fragrances: How the Physicochemical Properties Influence the Adsorption on Textile and the Delivery of Limonene. 2020. Industrial and Engineering Chemistry Research, 59 (28), pp. 12766 - 12773, Cited 10 times. DOI: 10.1021/acs.iecr.0c02075. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089278037&doi=10.1021%2facs.iecr.0c02075&partnerID=40&md5=7ef3919312fe1f39074f6928ca6f6935
Mesa Upegui, M. P., y Ortiz Rodríguez, C. I. (2016). Evaluación del proceso de pirólisis para la producción de diésel a nivel laboratorio a partir de residuos plásticos de industrias de alimentos. Obtenido de http://repository.uamerica.edu.co/bitstream/20.500.11839/477/1/6111667-2016-2-IQ.pdf.
Materić, Dušan; Kjær, Helle Astrid; Vallelonga, Paul; Tison, Jean-Louis; Röckmann, Thomas & Holzinger, Rupert. Nanoplastics measurements in Northern and Southern polar ice. 2022. Environmental Research, Vol 208, 12741, ISSN 0013-9351, https://doi.org/10.1016/j.envres.2022.112741. https://www.sciencedirect.com/science/article/pii/S0013935122000688.
Ministerio de Medio Ambiente y Desarrollo Sostenible. Basura Plástica. 2022. https://www.minambiente.gov.co/comunicado-de-prensa/en-2050-habria-en-el-mundo-unos-12-000-millones-de-toneladas-de-basura-plastica-si-no-se-cambian-las-pautas-de-consumo/
Mortensen, N.P; Fennell, T.R & Johnson, L.M. Unintended human ingestion of nanoplastics and small microplastics through drinking water, beverages, and food sources, NanoImpact. 2021. Vol 21, 100302, ISSN 2452-0748. https://doi.org/10.1016/j.impact.2021.100302. (https://www.sciencedirect.com/science/article/pii/S2452074821000112)
Myszograj, M. Microplastic in food and drinking water - environmental monitoring data. 2020. Sciendo. E-ISSN 2450-8594 CEER 2020; 30 (4): 0201-0209. DOI: 10.2478/ceer-2020-0060.
Li, J; Lusher, A;. Rotchell, J; Deudero, S; r Turra, A; Bråte, I; Sun, C; Hossain, M; Li, Q; Kolandhasamy, K; Shi, H. 2019. Using mussel as a global bioindicator of coastal microplastic pollution, Environmental Pollution, Volume 244, ISSN 0269-7491, https://doi.org/10.1016/j.envpol.2018.10.032. https://www.sciencedirect.com/science/article/pii/S0269749118326873.
National Oceanic and Atmospheric Administration (NOAA). What are microplastics? 2015. https://oceanservice.noaa.gov/facts/microplastics.html
Nieto, E; Montoto, T. Basuras marinas, plásticos y microplásticos: orígenes, impactos y consecuencias de una amenaza global. 2017. Área de Medio Marino de Ecologistas en Acción. ISBN:978-84-946151-9-1. https://www.ecologistasenaccion.org/wp-content/uploads/adjuntos-spip/pdf/informe-basuras-marinas.pdf
Norén, F. (2007) Small Plastic Particles in Coastal Swedish Waters. KIMO Report, Sweden. Pág. 1-11. https://www.researchgate.net/publication/284312290_Small_plastic_particles_in_C oastal_Swedish_waters
Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). Los microplásticos en los sectores de pesca y acuicultura ¿Qué sabemos? ¿Deberíamos preocuparnos? 2017. https://www.fao.org/3/ca3540es/CA3540ES.pdf
Panyam J, Labhasetwar V. Dynamics of endocytosis and exocytosis of poly(D,L-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells. Pharm Res. 2020 Feb;20(2):212-20. doi: 10.1023/a:1022219003551. PMID: 12636159.
Paul a, Valerie Stock a, Julia Cara-Carmona a, Elisa Lisicki a, Sofiya Shopova a, Valérie Fessard b, Albert Braeuning a, Holger Sieg; Linda Böhmert. 2020. Micro- and nanoplastics – current state of knowledge with the focus on oral uptake and toxicity. https://pubs.rsc.org/en/content/articlehtml/2020/na/d0na00539h
Parker Laura 2018 Datos sobre la contaminación por plástico | National Geographic
Parker Laura 2023 ¿Qué daños producen los microplásticos para el ser humano? | National Geographic
Peter G Ryan. The characteristics and distribution of plastic particles at the sea-surface off the southwestern Cape Province, South Africa, Marine Environmental Research, 1988. Vol 25, Issue 4, Pág. 249-273, ISSN 0141-1136, https://doi.org/10.1016/0141-1136(88)90015-3. (https://www.sciencedirect.com/science/article/pii/0141113688900153)
Li, Y; Li, Y; Jie Li, Zirong Song, Zhang, C; Guan, B. 2023. Toxicity of polystyrene nanoplastics to human embryonic kidney cells and human normal liver cells: Effect of particle size and Pb2+ enrichment, Chemosphere, Volume 328, 138545, ISSN 0045-6535, https://doi.org/10.1016/j.chemosphere.2023.138545. https://www.sciencedirect.com/science/article/pii/S0045653523008123.
Li, C; Gao, Y; He, S; H. Chi; Z. Li; X. Zhou; B. Yan. 2021. Quantification of Nanoplastic Uptake in Cucumber Plants by Pyrolysis Gas Chromatography/Mass Spectrometry. Environmental science & technology letters, 8, 633-638. doi: 10.1021/acs.estlett.1c00369
Polanco D. L. Estudio de factibilidad para la producción y comercialización de fuel oil a partir de residuos plásticos mediante un proceso pirolítico en Arequipa. 2019. http://re positorio.ucsp.edu.pe/bitstream/UCSP/16097/1/POLANCO_SUAREZ_DIA_RES.pdf.
Iheanacho; Odo. Neurotoxicity, oxidative stress biomarkers and haematological responses in African catfish (Clarias gariepinus) exposed to polyvinyl chloride microparticles. 2020. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, Volume 232, ISSN 1532-0456. https://doi.org/10.1016/j.cbpc.2020.108741. (https://www.sciencedirect.com/science/article/pii/S1532045620300417)
Geyer, R, Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science advances, 3(7), e1700782.
Gómez, J. G. (2016). Diagnóstico del impacto del plástico - botellas sobre el medio ambiente: un estado del arte. Obtenido de https://repository.usta.edu.co/bitstream/handle/11634/10047/Gomez2016.pdf?sequence=1.
Gregory, M.R. & Ryan, P.G. (1997). Pelagic Plastics and Other Seaborne Persistent Synthetic Debris: A Review of Southern Hemisphere Perspectives. In: Coe, J.M., Rogers, D.B. (eds) Marine Debris. Springer Series on Environmental Management. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8486-1_6
Greenpeace. (octubre de 2021). La contaminación plástica en Colombia y el mundo. Obtenido de http://greenpeace.co/pdf/reporte_plasticos.pdf.
Gigault J, Halle AT, Baudrimont M, Pascal PY, Gauffre F, Phi TL, El Hadri H, Grassl B, Reynaud S. Current opinion: What is a nanoplastic? Environ Pollut. 2018. doi: 10.1016/j.envpol.2018.01.024. Epub 2018 Jan 19. PMID: 29370948.
Hou, Z; Meng, R; Chen, G; Lai, T; Qing, R; Hao, S; Deng, J; Wang, B. Distinct accumulation of nanoplastics in human intestinal organoids. 2022. Science of The Total Environment. Volume 838, Part 2. ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2022.155811. (https://www.sciencedirect.com/science/article/pii/S0048969722029084)
Hwang, J; Choi, D; Han, S; Choi, J; Hong, J. 2019. An assessment of the toxicity of polypropylene microplastics in human derived cells, Science of The Total Environment, Volume 684, ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2019.05.071. https://www.sciencedirect.com/science/article/pii/S0048969719320832.
Huang, D; Chen, H; Shen, M; Tao, J; Chen, S; Yin, L; Zhou, W; Wang, X; Xiao, R; Li, R. 2022. Recent advances on the transport of microplastics/nanoplastics in abiotic and biotic compartments. Journal of Hazardous Materials, Volume 438, 129515, ISSN 0304-3894. https://doi.org/10.1016/j.jhazmat.2022.129515. (https://www.sciencedirect.com/science/article/pii/S0304389422013085)
Hyun-jong, B; Arya, G. Assembly mechanism of surface-functionalized nanocubes. 2020. Nanoscale, 2022, 14, 3917. DOI: 10.1039/D1NR07995F
Natalia, P. 2021. Chemical Analysis of Microplastics and Nanoplastics: Challenges, Advanced Methods, and Perspectives, Chemical Reviews 2021 121 (19), 11886-11936 DOI: 10.1021/acs.chemrev.1c00178
Li X, S.L; Chen L; Mei Q; Dong B; Dai X.; Ding G & Zeng E.Y. Microplastics in sewage sludge from the wastewater treatment plants in China. 2018. Water Research, 142, Pág. 75 - 85. DOI: 10.1016/j.watres.2018.05.034. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047603942&doi=10.1016%2fj.watres.2018.05.034&partnerID=40&md5=7bc32665557fefae87fd37e174246078
Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., ... & Law, K. L. 2015. Plastic waste inputs from land into the ocean. Science, 347(6223), 768-771.
Ji-Su Kim; Hee-Jee Lee; Seung-Kyu Kim; and Hyun-Jung Kim. 2018. Environmental Science & Technology, 12819-12828. DOI: 10.1021/acs.est.8b04180
Kashiwada S. Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environ Health Perspect. 2006 Nov;114(11):1697-702. doi: 10.1289/ehp.9209. PMID: 17107855; PMCID: PMC1665399.
Khan, Ibrahim; Khalid Saeed, Idrees Khan. Nanoparticles: Properties, applications and toxicities. 2019. Arabian Journal of Chemistry, Volume 12, Issue 7. ISSN 1878-5352. https://doi.org/10.1016/j.arabjc.2017.05.011. (https://www.sciencedirect.com/science/article/pii/S1878535217300990)
Khan, M; Ouladsmane, M; Alammari, A; Azam, M. 2021. Bisphenol A leaches from packaging to fruit juice commercially available in markets, Food Packaging and Shelf Life, Volume 28, 100678, ISSN 2214-2894. https://doi.org/10.1016/j.fpsl.2021.100678. https://www.sciencedirect.com/science/article/pii/S2214289421000466.
Kankanige, D; Babel, S. 2020. Smaller-sized micro-plastics (MPs) contamination in single-use PET-bottled water in Thailand. Sci Total Environ. 15;717:137232. doi: 10.1016/j.scitotenv.2020.137232. Epub 2020 Feb 8. PMID: 32062244.
Kik K, Bukowska B, Sicińska P. 2020. Polystyrene nanoparticles: Sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms. Environ Pollut. 2020 Jul;262:114297. doi: 10.1016/j.envpol.2020.114297. Epub. PMID: 32155552.
Kirstein, I; Hensel, F; Gomiero, A; Iordachescu, L; Vianello, A; Wittgren, H; Vollertsen, J. 2021. Drinking plastics? – Quantification and qualification of microplastics in drinking water distribution systems by µFTIR and Py-GCMS, Water Research, Volume 188, 116519, ISSN 0043-1354. https://doi.org/10.1016/j.watres.2020.116519. https://www.sciencedirect.com/science/article/pii/S004313542031054X.
Leppänen, I., Lappalainen, T., Lohtander, T. et al. Capturing colloidal nano- and microplastics with plant-based nanocellulose networks. 2022. Nat Commun 13, 1814. https://doi.org/10.1038/s41467-022-29446-7
Liebmann, B; Köppel, Sebastian; Königshofer, Philipp; Bucsics, Theresa; Reiberger, Thomas; Schwabl, Philipp. 2018. Assessment of microplastic concentrations in human stool - Preliminary results of a prospective study. https://www.researchgate.net/publication/328410183_Assessment_of_microplastic_concentrations_in_human_stool_-_Preliminary_results_of_a_prospective_study
Plastics Europe. Plásticos – Situación en 2020 Un análisis de los datos sobre producción, demanda y residuos de plásticos en Europa. 2020. https://plasticseurope.org/es/wp-content/uploads/sites/4/2021/11/ES_Plastics_the_facts-WEB-2020_May21_final_updatedJuly2021.pdf
Programa de las Naciones Unidas para el Medio Ambiente (PNUMA). Un problema doble: el plástico también emite potentes gases de efecto invernadero. 2018. https://www.unep.org/es/noticias-y-reportajes/reportajes/un-problema-doble-el-plastico-tambien-emite-potentes-gases-de
Gall, S.C. & Thompson, R.C. The impact of debris on marine life, Marine Pollution Bulletin. 2015. Vol. 92, Issues 1–2. Pages 170-179, ISSN 0025-326X, https://doi.org/10.1016/j.marpolbul.2014.12.041. (https://www.sciencedirect.com/science/article/pii/S0025326X14008571) Garrido, E;; Costanzo, V. 2022. Microplastics in food commodities – A food safety review on human exposure through dietary sources. Food Safety and Quality Series No. 18. Rome, FAO. https://doi.org/10.4060/cc2392en German Federal Institute for Risk Assessment (BfR). Presence of microplastics and nanoplastics in food, with particular focus on seafood. 2016. EFSA Journal. Vol 14, Issue 6. https://doi.org/10.2903/j.efsa.2016.4501
Zaki, M; Aris, A. An overview of the effects of nanoplastics on marine organisms. 2022. Science of The Total Environment Volume 831, 154757, ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2022.154757. https://www.sciencedirect.com/science/article/pii/S0048969722018502.
Wang, M, Rücklin, M; Poelmann, R; Mooij, C; Fokkema, M; Gerda E.M. Lamers, Merijn A.G. de Bakker, Ernest Chin, Lilla J. Bakos, Federica Marone, Bert J. Wisse, Marco C. de Ruiter, Shixiong Cheng, Luthfi Nurhidayat, Martina G. Vijver, Michael K. Richardson. 2023. Nanoplastics causes extensive congenital malformations during embryonic development by passively targeting neural crest cells, Environment International, Volume 173, 107865, ISSN 0160-4120. https://doi.org/10.1016/j.envint.2023.107865. (https://www.sciencedirect.com/science/article/pii/S0160412023001381)
Winkler, A; Fumagalli, F; Cella, C; Gilliland, D; Tremolada, P; Valsesia, A. 2022. Detection and formation mechanisms of secondary nanoplastic released from drinking water bottles, Water Research, Volume 222, 118848, ISSN 0043-1354, https://doi.org/10.1016/j.watres.2022.118848. https://www.sciencedirect.com/science/article/pii/S0043135422007953.
Wright SL & Kelly FJ. Plastic and Human Health: A Micro Issue? 2017. Environ Sci Technol. 20;51(12):6634-6647. doi: 10.1021/acs.est.7b00423. PMID: 28531345. https://pubmed.ncbi.nlm.nih.gov/28531345/
Xu X, Zhou G, Lei K, LeBlanc GA, An L. 2019. Phthalate Esters and Their Potential Risk in PET Bottled Water Stored under Common Conditions. Int J Environ Res Public Health. doi: 10.3390/ijerph17010141. PMID: 31878152; PMCID: PMC6982309.
Yafei, Shi; Chai, Jiaqi; Xu, Tao; Ding, Lihu; Huang, Meijie; Gan, Fangmao; Pi, Kewu; Gerson, Andrea R & Yang, Jiakuan. Microplastics contamination associated with low-value domestic source organic solid waste: A review. (2023) Science of the Total Environment, 857, art. no. 159679 DOI: 10.1016/j.scitotenv.2022.159679. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85140474780&doi=10.1016%2fj.scitotenv.2022.159679&partnerID=40&md5=aae9f5d382319659bdef7971615347b7
Yeo IC, Shim KY, Kim K, Jeong CB. Maternal exposure to nanoplastic induces transgenerational toxicity in the offspring of rotifer Brachionus koreanus. Comp Biochem Physiol C Toxicol Pharmacol. 2023 Jul;269:109635. doi: 10.1016/j.cbpc.2023.109635. Epub 2023 Apr 23. PMID: 37088197.
Yu, J., Huo, R., Wu, C. et al. Influence of interface structure on dielectric properties of epoxy/alumina nanocomposites. Macromol. Res. 20, 816–826 (2012). https://doi.org/10.1007/s13233-012-0122-2
Yuan, Z; Nag, R & Cummins, E. Human health concerns regarding microplastics in the aquatic environment - From marine to food systems. 2022. Science of The Total Environment, Vol 823, 153730, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2022.153730. (https://www.sciencedirect.com/science/article/pii/S0048969722008221)
Zambrano Romero, G, A. Efecto de la nanoestructura sobre las propiedades térmicas y magnéticas de nanomateriales tipo 2D y 0D. 2020. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. Vol. 44 Núm. 170. https://doi.org/10.18257/raccefyn.916. https://raccefyn.co/index.php/raccefyn/article/view/916
Zettler, E.R; Mincer, T.J; Amaral-Zettler; L.A. Life in the "plastisphere": microbial communities on plastic marine debris. Environ Sci Technol. 2013 Jul 2;47(13):7137-46. doi: 10.1021/es401288x.
Wang, X; Zhao, J; Ding, S; Zhang, H. 2023 .Interaction of polystyrene nanoplastics with human fibrinogen, International Journal of Biological Macromolecules, Volume 238,124049, ISSN 0141-8130. https://doi.org/10.1016/j.ijbiomac.2023.124049. https://www.sciencedirect.com/science/article/pii/S0141813023009431.
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
http://purl.org/redcol/resource_type/ART
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Wang, X; Jia, Z; Zhou, X; Su, L; Wang, M; Tian Wang, Hongyan Zhang. 2023. Nanoplastic-induced vascular endothelial injury and coagulation dysfunction in mice, Science of The Total Environment, Volume 865, 161271, ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2022.161271. (https://www.sciencedirect.com/science/article/pii/S0048969722083759)
Vitali, C; Ruud, J.B; Hans-Gerd, P, W.F. Nielen, M. 2023. Microplastics and nanoplastics in food, water, and beverages; part I. occurrence, TrAC Trends in Analytical Chemistry, Volume 159, 116670, ISSN 0165-9936. https://doi.org/10.1016/j.trac.2022.116670. https://www.sciencedirect.com/science/article/pii/S0165993622001534.
Programa de las Naciones Unidas para el Medio Ambiente (PNUMA).. Our planet is choking on plastic. 2018. https://www.unep.org/interactives/beat-plastic-pollution/?gclid=CjwKCAjwtp2bBhAGEiwAOZZTuCy8zOYsQO0luCnlJonF0g1QO4JPYOuW_zsqcOo7zEKX60_3rPxjIxoCnnUQAvD_BwE
Seri, N.A; Abdullah, A.L; Salleh, N.A.M, Hwai, A.T.S; Yasin, Z. 2022. The occurrence and consequences of microplastics and nanoplastics in fish gastrointestinal tract. Journal of Survey in Fisheries Sciences. 8. 107-133. 10.18331/SFS2022.8.3.9. DOI:10.18331/SFS2022.8.3.9. https://www.researchgate.net/publication/361414216_The_occurrence_and_consequences_of_microplastics_and_nanoplastics_in_fish_gastrointestinal_tract
Programa de las Naciones Unidas para el Medio Ambiente (ONU). Plásticos de un solo uso Una hoja de ruta para la sostenibilidad. 2018. file:///C:/Users/Usuario/Downloads/plasticosdeunsolouso.pdf
Prenner S; Allesch A; Staudner M; Rexeis M; Schwingshackl M; Huber-Humer M & Part F. Static modelling of the material flows of micro- and nanoplastic particles caused by the use of vehicle tyres. 2021. Environmental Pollution, 290, art. no. 118102. DOI: 10.1016/j.envpol.2021.118102. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85114706788&doi=10.1016%2fj.envpol.2021.118102&partnerID=40&md5=a39650836714a01f589f0273aefce502
Protect Wildlife and Nature (WWF). Naturaleza sin Plástico:Evaluación de la ingestión humana de plásticos presentes en la naturaleza. 2019. https://wwflac.awsassets.panda.org/downloads/evaluacion_de_la_ingestion_humana_de_plasticos_presentes_en_la_naturaleza_1_1.pdf
Remya, N.S & Mohanan, P.V. Chapter 3 - Safety and toxicity concerns of nanosystems, Editor(s): Chandra Prakash Sharma, In Micro and Nano Technologies, Drug Delivery Nanosystems for Biomedical Applications. 2018. Elsevier, Pág. 33-44. ISBN 9780323509220. https://doi.org/10.1016/B978-0-323-50922-0.00003-1. (https://www.sciencedirect.com/science/article/pii/B9780323509220000031)
Perinelli D,R; Palmieri G,F; Cespi M; Bonacucina G. Encapsulation of Flavours and Fragrances into Polymeric Capsules and Cyclodextrins Inclusion Complexes: An Update. Molecules. 2020 Dec 11;25(24):5878. doi: 10.3390/molecules25245878. PMID: 33322621; PMCID: PMC7763935.
Rodríguez-Hernández AG, Chiodoni A, Bocchini S, Vazquez-Duhalt R. 3D printer waste, a new source of nanoplastic pollutants. Environ Pollut. 2020 Dec;267:115609. doi: 10.1016/j.envpol.2020.115609. Epub 2020 Sep 7. PMID: 33254724.
Royer S,J; Ferrón S, Wilson S,T; Karl D,M. Production of methane and ethylene from plastic in the environment. 2018 Aug 1;13(8):e0200574. doi: 10.1371/journal.pone.0200574. PMID: 30067755; PMCID: PMC6070199.
Sakali, A; Coello, D; Haïlaf, A; Egea-Corbacho, A; Albendín, G; Arellano, J; Brigui, J; Quiroga, J; Rodríguez-Barroso, R. A new protocol to assess the microplastics in sewage sludge. 2021. Journal of Water Process Engineering, Volume 44, 102344, ISSN 2214-7144, https://doi.org/10.1016/j.jwpe.2021.102344. https://www.sciencedirect.com/science/article/pii/S2214714421004311
Senathirajah K; Attwood S; Bhagwat G; Carbery M; Wilson S & Palanisami T. Estimation of the mass of microplastics ingested - A pivotal first step towards human health risk assessment. 2021. J Hazard Mater. 404(Pt B):124004. doi: 10.1016/j.jhazmat.2020.124004. Epub 2020 Oct 6. PMID: 33130380.
Sherrington, C. (2016). Plastics in the marine environment IUCN. https://www.iucn.org/resources/issues-brief/marine-plastic-pollution#:~:text=At%20least%2014%20million%20tons,causes%20severe%20injuries%20and%20death.
Unión Europea (UE). Nanomateriales. 2011. https://echa.europa.eu/es/regulations/nanomaterials
SCHEER (Scientific Committee on Health, Environmental and Emerging Risks) Statement on emerging health and environmental issues (2018), 20 December 2018. https://health.ec.europa.eu/system/files/2019-02/scheer_s_002_0.pdf
Shopova S; Sieg H & Braeuning A. Risk assessment and toxicological research on micro- and nanoplastics after oral exposure via food products. 2020. EFSA Journal, 18 (S1), art. no. e181102 DOI: 10.2903/j.efsa.2020.e181102. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096918265&doi=10.2903%2fj.efsa.2020.e181102&partnerID=40&md5=7c947c9a5d39b07747ec0bfe8011f19b
Schwabl P; Köppel S; Königshofer P; Bucsics T; Trauner M; Reiberger T; Liebmann B. Detection of Various Microplastics in Human Stool: A Prospective Case Series. Ann Intern Med. 2019. doi: 10.7326/M19-0618. Epub 2019 Sep 3. PMID: 31476765.
Stojkovic, M; Ortuño, F; Han, D; Stojkovic, P; Dopazo, J; M. Stankovic. 2023. Polystyrene nanoplastics affect transcriptomic and epigenomic signatures of human fibroblasts and derived induced pluripotent stem cells: Implications for human health, Environmental Pollution, Volume 320, 120849, ISSN 0269-7491. https://doi.org/10.1016/j.envpol.2022.120849. (https://www.sciencedirect.com/science/article/pii/S0269749122020644)
Tian L; Skoczynska E; van Putten R.-J; Leslie H.A & Gruter G.-J.M. Quantification of polyethylene terephthalate micro- and nanoplastics in domestic wastewater using a simple three-step method (2023) Science of the Total Environment, 857, art. no. 159209. DOI: 10.1016/j.scitotenv.2022.159209 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85140140128&doi=10.1016%2fj.scitotenv.2022.159209&partnerID=40&md5=0a320207d3a89c35bd5fe27e6b529a92
The University of Newcastle - Dalberg. No Plastic in Nature: Assessing Plastic Ingestion from Nature to People. 2019. https://awsassets.panda.org/downloads/plastic_ingestion_press_singles.pdf
The American Academy of Pediatrics. 2017. Bottles and bisphenol A (BPA). https://www.healthychildren.org/Spanish/ages-stages/baby/feeding-nutrition/Paginas/Baby-Bottles-And-Bisphenol-A-BPA.aspx
Thompson RC, Moore CJ, vom Saal FS, Swan SH. Plastics, the environment and human health: current consensus and future trends. Philos Trans R Soc Lond B Biol Sci. 2009. doi: 10.1098/rstb.2009.0053. PMID: 19528062; PMCID: PMC2873021.
Torres-Ruiz, M; González, M; Morales, M; Martin-Folgar, R; González, M; Cañas-Portilla, A; De la Vieja, A. Neurotoxicity and endocrine disruption caused by polystyrene nanoparticles in zebrafish embryo. 2023. Science of The Total Environment. Volume 874, ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2023.162406. (https://www.sciencedirect.com/science/article/pii/S0048969723010227)
Tu P, Xue J, Niu H, Tang Q, Mo Z, Zheng X, Wu L, Chen Z, Cai Y, Wang X. 2023. Deciphering Gut Microbiome Responses upon Microplastic Exposure via Integrating Metagenomics and Activity-Based Metabolomics. Metabolites. 13(4):530. doi: 10.3390/metabo13040530. PMID: 37110188; PMCID: PMC10145956.
German Federal Institute for Risk Assessment (BfR), Department of Food Safety, Unit Effect-based Analytics and Toxicogenomics Unit and Nanotoxicology Junior Research Group. Sofiya Shopova,Holger Sieg & Albert Braeuning. Risk assessment and toxicological research on micro- and nanoplastics after oral exposure via food products 2020. Vol 18, Issue S1 Special Issue: EU-FORA Series 3. https://doi.org/10.2903/j.efsa.2020.e181102
Fundación Vasca para la Seguridad Agroalimentaria (ELIKA). 2021. Micro y Nanoplásticos. https://seguridadalimentaria.elika.eus/fichas-de-peligros/micro-y-nanoplasticos/
Publication
Aminu, I; Nahil, M; Williams, P. Pyrolysis-plasma/catalytic reforming of post-consumer waste plastics for hydrogen production. 2023. Catalysis Today. Volume 420, ISSN 0920-5861. https://doi.org/10.1016/j.cattod.2023.114084. (https://www.sciencedirect.com/science/article/pii/S0920586123000913)
https://creativecommons.org/licenses/by-nc-nd/4.0
Revista EIA - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Abbasi, S. Routes of human exposure to micro(nano)plastics. 2021. Current Opinion in Toxicology, 27, Pág. 41 - 46. DOI: 10.1016/j.cotox.2021.08.004. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85120854010&doi=10.1016%2fj.cotox.2021.08.004&partnerID=40&md5=e9c9d75f4ee506d6f9c5525762d8d314
Abbasi, S; Keshavarzi, B; Moore, F; Delshab, H; Soltani, N; Sorooshian, A. 2017. Investigation of microrubbers, microplastics and heavy metals in street dust: a study in Bushehr city, Iran. Environ Earth Sci 76(23):798. https://doi.org/10.1007/s12665-017-7137-0
Ali, S; Al-Tohamy, T; Eleni Koutra, Mohamed S. Moawad, Michael Kornaros, Ahmed M. Mustafa, Yehia A.-G. Mahmoud, Abdelfattah Badr, Mohamed E.H. Osman, Tamer Elsamahy, Haixin Jiao, Jianzhong Sun. Nanobiotechnological advancements in agriculture and food industry: Applications, nanotoxicity, and future perspectives. 2021. Science of The Total Environment, Volume 792, 148359, ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2021.148359. (https://www.sciencedirect.com/science/article/pii/S0048969721034306)
Annangi, B; Villacorta, A; Vela, L; Tavakolpournegari, A; Marcos, R; Hernández, A. 2023. Effects of true-to-life PET nanoplastics using primary human nasal epithelial cells, Environmental Toxicology and Pharmacology, Volume 100, 104140, ISSN 1382-6689. https://doi.org/10.1016/j.etap.2023.104140. https://www.sciencedirect.com/science/article/pii/S1382668923000820.
Fundación Heinrich Böll. Atlas del plástico Datos y cifras sobre el mundo de los polímeros sintéticos. 2019. https://co.boell.org/sites/default/files/2021-02/Plastic%20Atlas%202019%20cambio.pdf
https://revistas.eia.edu.co/index.php/reveia/article/view/1712
Almroth B.M; Åström L.; Roslund S; Petersson H; Johansson M & Persson N.-K. Quantifying shedding of synthetic fibers from textiles; a source of microplastics released into the environment. 2018. Environmental Science and Pollution Research, 25 (2), Pág. 1191 - 1199. DOI: 10.1007/s11356-017-0528-7. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85032340088&doi=10.1007%2fs11356-017-0528-7&partnerID=40&md5=2e38c8ca07530fff8692a2cc9d4461d3
Anthony L. Andrady. Microplastics in the marine environment, Marine Pollution Bulletin. 2011. Vol 62, Issue 8, Pág. 1596-1605, ISSN 0025-326X, https://doi.org/10.1016/j.marpolbul.2011.05.030. (https://www.sciencedirect.com/science/article/pii/S0025326X11003055)
Arias A.H; Alfonso M.B; Girones L; Piccolo M.C & Marcovecchio J.E. Synthetic microfibers and tyre wear particles pollution in aquatic systems: Relevance and mitigation strategies. 2022. Environmental Pollution, 295, art. no. 118607. DOI: 10.1016/j.envpol.2021.118607. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121806317&doi=10.1016%2fj.envpol.2021.118607&partnerID=40&md5=c316adb10be27a47fa9e692d166dec98
Arika, B; Alp, F; Ozfidan-Konakci, C; Balci, M; Elbasan, F; Yildiztugay, E; Cavusoglu, H. Fe2O3-modified graphene oxide mitigates nanoplastic toxicity via regulating gas exchange, photosynthesis, and antioxidant system in Triticum aestivum. 2022. Chemosphere, Volume 307, Part 4, 136048, ISSN 0045-6535. https://doi.org/10.1016/j.chemosphere.2022.136048. (https://www.sciencedirect.com/science/article/pii/S0045653522025413)
Agencia para Sustancias Tóxicas y el Registro de Enfermedades. (ATSDR). 2000. Reseña Toxicológica de los Bifenilos Policlorados (BPCs) (en inglés). Atlanta, GA: Departamento de Salud y Servicios Humanos de EE. UU., Servicio de Salud Pública.
Austen, K; MacLean, J; Balanzategui, D; Hölker, F. Microplastic inclusion in birch tree roots, 2022. Science of The Total Environment, Volume 808, 152085, ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2021.152085. https://www.sciencedirect.com/science/article/pii/S0048969721071618)
Auta, H.S; Abioye, O.P; Aransiola, S.A; Bala, J.D; Chukwuemeka, V.I; Hassan, A; Aziz, A; Fauziah, S.H. 2022. Enhanced microbial degradation of PET and PS microplastics under natural conditions in mangrove environment, Journal of Environmental Management, Volume 304, 114273, ISSN 0301-4797. https://doi.org/10.1016/j.jenvman.2021.114273. https://www.sciencedirect.com/science/article/pii/S0301479721023355
Español
Revista EIA
Bhatt P, Pandey SC, Joshi S, Chaudhary P, Pathak VM, Huang Y, Wu X, Zhou Z, Chen S. Nanobioremediation: A sustainable approach for the removal of toxic pollutants from the environment. J Hazard Mater. 2022 Apr 5;427:128033. doi: 10.1016/j.jhazmat.2021.128033. Epub 2021 Dec 9. PMID: 34999406.
cadena trófica
A través de los siglos, las poblaciones de seres humanos asentadas en los alrededoresde a�luentes hídricos han dispuesto indiscriminadamente sus desechos arrojándolosa los ríos, lagos, océanos, y terrenos aledaños. Cuando las cantidades de desechos, ensu mayoría biodegradables son bajas, las consecuencias ambientales y sobre la saludde las comunidades bióticas son mínimas. Sin embargo, la fabricación y disposiciónen masa de materiales sintéticos no biodegradables desde mediados del siglo XX hatenido profundos efectos biológicos y ambientales. Los plásticos son el ejemplo mássigni�icativo de estos ubicuos materiales sintéticos, usualmente de un solo uso, nobiodegradables y con altas cantidades de aditivos químicos tóxicos. Debido a la altaestabilidad y resistencia del plástico, es imposible vincularlo rápidamente enprocesos que permitan su degradación y descomposición; por ello, se han convertidoen la mitad de los residuos que hoy existen en el planeta. La deriva de estosmateriales conlleva a que, bajo condiciones ambientes, paulatinamente se vayanfragmentando en partículas alcanzando las escalas de los micrómetros y losnanómetros, a estas partículas se les ha categorizado como contaminantesincidentales: micro y nanoplásticos. Hoy en día, el mundo contempla el boom de lananotecnología y cada vez más industrias se interesan por el uso de esta tecnologíaemergente; producen micro y nanoplásticos de manera intencional para serincorporados en productos cosméticos, �ibras textiles, entre muchos otrospropósitos. La contaminación de estas partículas plásticas de dimensionesimperceptibles, llega a los alimentos de consumo humano a través de la persistenciaen los ecosistemas y la bioacumulación, por diferentes vías de exposición, principalmente por ingesta en las diferentes cadenas que componenla red trófica mundial, además, de la migración del material empleado para elalmacenamiento, preservación y empaque de los alimentos. Los nanoplásticos yalgunos microplásticos al ser ingeridos atraviesan las barreras físicas epiteliales yse distribuyen por todo el organismo ingresando en prácticamente todos los tejidoscorporales, alterando su funcionamiento y aumentando la carga de enfermedad delas comunidades bióticas incluyendo la humana. Al ser considerados materialesinertes y heterogéneos, su identificación y recuperación es compleja, además deno ser completamente efectiva. El presente escrito busca revisar informaciónque permita evaluar el impacto de los nanoplásticos presentes en los alimentos,resaltando los efectos tóxicos que poseen estos materiales para la salud humanaa través de la bioacumulación y biomagnificación en las cadenas tróficas a nivelbiomolecular subcelular y, por otro lado, describir las técnicas de recuperación delos nanoplásticos para reducir su presencia en los alimentos.
Erazo Ordóñez, María Jimena
Révérend Lizcano, Carlos Arturo
nanoplásticos
microplásticos
alimentos
salud humana
medio ambiente
Fondo Editorial EIA - Universidad EIA
bioacumulación
disruptores endocrinos
21
41
Núm. 41 , Año 2024 : .
Artículo de revista
application/pdf
Bhagwat G, O'Connor W, Grainge I, Palanisami T. Understanding the Fundamental Basis for Biofilm Formation on Plastic Surfaces: Role of Conditioning Films. Front Microbiol. 2021 Jun 25;12:687118. doi: 10.3389/fmicb.2021.687118. PMID: 34248907; PMCID: PMC8267902
Akçan R, Aydogan HC, Yildirim MŞ, Taştekin B & Sağlam N. Nanotoxicity: a challenge for future medicine. 2020. Turk J Med Sci. Jun 23;50(4):1180-1196. doi: 10.3906/sag-1912-209. PMID: 32283898; PMCID: PMC7379444. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7379444/
Beltrán, M; Marcilla, A. Tecnología de polímeros procesado y propiedades. Universidad de Alicante. 2012. Pág. 17. https://books.google.com.co/books?hl=es&lr=&id=jxilUUn4_QAC&oi=fnd&pg=PA15&dq=POLIMEROS&ots=eCPy5xgswC&sig=loOhDwg6U4a75udeAiW21NK_n38&redir_esc=y#v=onepage&q&f=false
Dang, F; Qingyu Wang, Yingnan Huang, Yujun Wang, Baoshan Xing. 2022. Key knowledge gaps for One Health approach to mitigate nanoplastic risks, Eco-Environment & Health. Volume 1, Issue 1. ISSN 2772-9850. https://doi.org/10.1016/j.eehl.2022.02.001. (https://www.sciencedirect.com/science/article/pii/S2772985022000011)
Comité Científico de la Agencia Española de Seguridad Alimentaria y Nutrición (AESAN) sobre la presencia y la seguridad de los plásticos como contaminantes en los alimentos. 2019. https://www.aesan.gob.es/AECOSAN/docs/documentos/seguridad_alimentaria/evaluacion_riesgos/PLASTICOS_ALIMENTOS.pdf
Conti, G; Ferrante, M; Banni, M; Favara, C; Nicolosi, I; Cristaldi, A; Fiore, M; Zuccarello, P. 2020. Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population, Environmental Research, Volume 187, 109677, ISSN 0013-9351, https://doi.org/10.1016/j.envres.2020.109677. (https://www.sciencedirect.com/science/article/pii/S0013935120305703)
Chortarea S, Gupta G, Saarimäki LA, Netkueakul W, Manser P, Aengenheister L, Wichser A, Fortino V, Wick P, Greco D, Buerki-Thurnherr T. 2023. Transcriptomic profiling reveals differential cellular response to copper oxide nanoparticles and polystyrene nanoplastics in perfused human placenta, Environment International, 108015, ISSN 0160-4120. https://doi.org/10.1016/j.envint.2023.108015. https://www.sciencedirect.com/science/article/pii/S016041202300288X.
Czubacka E, Czerczak S, Kupczewska-Dobecka MM. 2021. The overview of current evidence on the reproductive toxicity of dibutyl phthalate. Int J Occup Med Environ Health. doi: 10.13075/ijomeh.1896.01658. Epub 2020 Nov 13. PMID: 33223541.
Bergmann, Melanie; Gutow, Lars & Klages, Michael. Marine Anthropogenic Litter. ISBN: 978-3-319-37653-0. https://link.springer.com/book/10.1007/978-3-319-16510-3
Dalmau-Soler, J; Ballesteros-Cano; R., Boleda, M.R. et al. 2021. Microplastics from headwaters to tap water: occurrence and removal in a drinking water treatment plant in Barcelona Metropolitan area (Catalonia, NE Spain). Environ Sci Pollut Res 28, 59462–59472. https://doi.org/10.1007/s11356-021-13220-1
Dietz, K.F; Herth, S. 2013. Plant nanotoxicology, Trends in Plant Science, Volume 16, Issue 11. ISSN 1360-1385, https://doi.org/10.1016/j.tplants.2011.08.003. https://www.sciencedirect.com/science/article/pii/S1360138511001695.
Deba, S, Núñez, P. 2017. Efectos del bisfenol A en la reproducción femenina, Medicina Reproductiva y Embriología Clínica, Volume 4, Issue 1, ISSN 2340-9320, https://doi.org/10.1016/j.medre.2017.02.001. https://www.sciencedirect.com/science/article/pii/S2340932017300099.
Comisión del Códex Alimentarius. REP21/CAC. 8 – 15, 17-18 de noviembre y 14 de diciembre de 2021. https://www.fao.org/fao-who-codexalimentarius/sh-proxy/es/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-701-44%252FFINAL%252520REPORT%252FREP21_CACs.pdf
De-la-Torre, GE. Microplastics: an emerging threat to food security and human health. J Food Sci Technol. 2020. doi: 10.1007/s13197-019-04138-1. Epub 2019 Oct 19. PMID: 32327770; PMCID: PMC7171031.
Desforges JP, Galbraith M, Dangerfield N, Ross PS. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean. Mar Pollut Bull. 2014. doi: 10.1016/j.marpolbul.2013.12.035. PMID: 24398418.
Diggle, A., & Walker, T. R. 2022. Environmental and Economic Impacts of Mismanaged Plastics and Measures for Mitigation. Environments, 9(2), 15. MDPI AG. Retrieved from http://dx.doi.org/10.3390/environments9020015
Ellen Macarthur Foundation.The New Plastics Economy: Rethinking the future of plastics & catalysing action. 2017. https://ellenmacarthurfoundation.org/the-new-plastics-economy-rethinking-the-future-of-plastics-and-catalysing
Elizalde, V.M; García-Fabila, M.M; Campuzano, M.E.; Bustamante, P. 2012. Exposición prenatal a ftalatos. Anemia materna, duración de la gestación y somatometría del recién nacido, Clínica e Investigación en Ginecología y Obstetricia, Volume 39, Issue 4, ISSN 0210-573X, https://doi.org/10.1016/j.gine.2010.11.005. https://www.sciencedirect.com/science/article/pii/S0210573X10001322.
Eriksen M, Lebreton LC, Carson HS, Thiel M, Moore CJ, Borerro JC, Galgani F, Ryan PG, Reisser J. Plastic Pollution in the World's Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. 2014. doi: 10.1371/journal.pone.0111913. PMID: 25494041; PMCID: PMC4262196.
Erik R. Zettler; Tracy J. Mincer & Linda A. Amaral-Zettler. Life in the “Plastisphere”: Microbial Communities on Plastic Marine Debris. 2013. Environmental Science & Technology. 47 (13), 7137-7146. DOI: 10.1021/es401288x
Ferrante, M; Oliveri Conti, G; Zuccarello, P. 2020. Patent method for the extraction and determination of micro- and nano- plastics in organic and inorganic matrix samples: An application on vegetals, MethodsX, Volume 7, 100989, ISSN 2215-0161, https://doi.org/10.1016/j.mex.2020.100989. https://www.sciencedirect.com/science/article/pii/S2215016120302090.
Fadare, O; Okoffo, E; Olasehinde, E. Microparticles and microplastics contamination in African table salts. 2021. Marine Pollution Bulletin, Volume 164, 112006, ISSN 0025-326X, https://doi.org/10.1016/j.marpolbul.2021.112006. https://www.sciencedirect.com/science/article/pii/S0025326X21000400
Comisión del Códex Alimentarius. CX/FFP 21/35/3. 20 de septiembre – 25 de octubre de 2021. https://www.fao.org/fao-who-codexalimentarius/sh-proxy/fr/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-722-35%252FWD%252Ffp35_03s.pdf
Carbery, M; O'Connor, W; Palanisami, T. Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. 2018. Environment International, Volume 115, ISSN 0160-4120. https://doi.org/10.1016/j.envint.2018.03.007. (https://www.sciencedirect.com/science/article/pii/S0160412017322298)
Bretas, c; Navajas, S; Bes-Piá, M.A; Mendoza-Roca, J.A. Methodology for removing microplastics and other anthropogenic microparticles from sludge dewatering system. 2022. Journal of Environmental Management, Volume 314, 115010, ISSN 0301-4797. https://doi.org/10.1016/j.jenvman.2022.115010. https://www.sciencedirect.com/science/article/pii/S0301479722005837)
Billmeyer, Fred W, Jr. Ciencia de los polímeros. (PDF 2020). https://books.google.com.co/books?hl=es&lr=&id=Fe0FEAAAQBAJ&oi=fnd&pg=PR5&dq=POLIMEROS&ots=e3x4n_fanJ&sig=feB1JvMzQFMY7ISGqcbEpHI_kLM&redir_esc=y#v=onepage&q=POLIMEROS&f=false
Boggiano, H; Berté, R; Scarpettini, A; Cortés, E; Maier, S; Bragas, A (2021). Determination of Nanoscale Mechanical Properties of Polymers via Plasmonic Nanoantennas. https://www.researchgate.net/publication/354142002_Determination_of_Nanoscale_Mechanical_Properties_of_Polymers_via_Plasmonic_Nanoantennas/citation/download
Bosker, T; Bouwman, L.J;. Brun, N.R; Behrens, P; Vijver, M.G. 2019. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum, Chemosphere, Volume 226, ISSN 0045-6535. https://doi.org/10.1016/j.chemosphere.2019.03.163. https://www.sciencedirect.com/science/article/pii/S0045653519306095.
Bouwmeester H, Hollman PC, Peters RJ. Potential Health Impact of Environmentally Released Micro- and Nanoplastics in the Human Food Production Chain: Experiences from Nanotoxicology. 2015. Environ Sci Technol. 4;49(15):8932-47. doi: 10.1021/acs.est.5b01090. PMID: 26130306. https://pubmed.ncbi.nlm.nih.gov/26130306/
Bustamante-Montes; Borja-Aburto; Hernández-Valero; García-Fábila, Patricia; Borja-Bustamante; González-Álvarez, Germán Antonio Acosta-Gordillo. 2021. Phthalates exposure during pregnancy a study in a Mexican cohort, Toxicology Reports, Volume 8, ISSN 2214-7500. https://doi.org/10.1016/j.toxrep.2021.05.006. https://www.sciencedirect.com/science/article/pii/S2214750021000974.
Calder, M; Herrera, A. Polímeros adhesivos y formación de uniones a través de reacciones de polimerización y fuerzas intermoleculares. 2019. Educación Química por Universidad Nacional Autónoma de México. Volumen 30, Núm. 2. DOI: https://doi.org/10.22201/fq.18708404e.2019.2.68197
Calderón Sáenz, F. La Producción de Combustibles Vehiculares a partir de Plásticos de Desecho. 2016. Obtenido de http://www.drcalderonlabs.com/Procesos/Pirólisis/Proceso%20de%20Pirólisis.pdf.
Campos, C. A; Tenoza, F. (2018). Combustibles fuel-oíl obtenidos de residuos plásticos mediante pirólisis, Pucallpa – Ucayali, 2018. Obtenido de http://repositorio.ucv.edu.pe/handle/UCV/32380.
Calderon, E; Hansen, P; Rodríguez, A; C.M. Blettler, M; Syberg, K; Khan, F. 2019. Microplastics in the Digestive Tracts of Four Fish Species from the Ciénaga Grande de Santa Marta Estuary in Colombia. Water, Air and Soil Pollution, 230(257). https://doi.org/10.1007/s11270-019-4313-8
European Chemicals Agency (ECHA). Microplastics. 2018. https://echa.europa.eu/hot-topics/microplastics
Chen, J; Chen, X; Yang, X, Hao, S; Tang, Y; Zhang, T; J; Xu, J. Surface functionalization-dependent inflammatory potential of polystyrene nanoplastics through the activation of MAPK/ NF-κB signaling pathways in macrophage Raw 264.7. 2023. Ecotoxicology and Environmental Safety, Volume 251, ISSN 0147-6513. https://doi.org/10.1016/j.ecoenv.2023.114520. (https://www.sciencedirect.com/science/article/pii/S0147651323000246)
Carpenter, E; Smith, Jr. Plastics on the Sargasso Sea Surface. Science. 17 de marzo de 1972. Vol. 175, número 4027 págs. 1240 - 1241. DOI: 10.1126/ciencia.175.4027.1240
Castro-Correia C, Correia-Sá L, Norberto S, Delerue-Matos C, Domingues V, Costa-Santos C, Fontoura M, Calhau C. 2018. Phthalates and type 1 diabetes: is there any link? Environ Sci Pollut Res Int. doi: 10.1007/s11356-018-1997-z. Epub 2018 Apr 21. PMID: 29680886; PMCID: PMC6028856.
Ford, H; Jones, N; Davies, A; Godley, B; Jambeck, J; Napper, I; Suckling, C; Gareth J. Williams, Woodall, L; Koldewey, H. 2022. The fundamental links between climate change and marine plastic pollution, Science of The Total Environment, Volume 806, Part 1,150392, ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2021.150392. https://www.sciencedirect.com/science/article/pii/S0048969721054693.
Catarino, A; Thompson, R; Sanderson, W; Theodore B. Henry. 2016. Development and optimization of a standard method for extraction of microplastics in mussels by enzyme digestion of soft tissues. https://setac.onlinelibrary.wiley.com/doi/10.1002/etc.3608
Human health
food
Over the centuries, the populations of human beings settled in the surroundingsof water tributaries have indiscriminately disposed of their waste, throwing it intorivers, lakes, oceans, and surrounding land. When the amounts of waste, mostlybiodegradable, are low, the environmental consequences and the health of bioticcommunities are minimal. However, the mass manufacture and disposal of nonbiodegradable synthetic materials since the mid-20th century has had profoundbiological and environmental effects. Plastics are the most significant exampleof these ubiquitous synthetic materials, usually single-use, non-biodegradableand with high amounts of toxic chemical additives. Due to the high stability andresistance of plastic, it is impossible to quickly bind it in processes that allow itsdegradation and decomposition; for this reason, they have become half of thewaste that exists on the planet today. The drift of these materials leads them,under ambient conditions, to gradually fragment into particles reaching thescales of micrometers and nanometers. These particles have been categorized asincidental contaminants: micro and nanoplastics. Today, the world is witnessing the nanotechnology boom and more and more industries are interested in the useof this emerging technology; They intentionally produce micro and nanoplasticsto be incorporated into cosmetic products, textile fibers, among many otherpurposes. The contamination of these plastic particles of imperceptible dimensions,reaches food for human consumption through persistence in ecosystems andbioaccumulation, through different routes of exposure, mainly through ingestionin the different chains that make up the global trophic web, in addition, of themigration of the material used for the storage, preservation and packagingof food. When ingested, nanoplastics and some microplastics cross physicalepithelial barriers and are distributed throughout the body, entering practicallyall body tissues, altering their function and increasing the disease burden of bioticcommunities, including humans. As they are considered inert and heterogeneousmaterials, their identification and recovery are complex, in addition to not beingcompletely effective. This paper seeks to review information that allows evaluatingthe impact of nanoplastics present in food, highlighting the toxic effects that thesematerials have for human health through bioaccumulation and biomagnification infood chains at the subcellular biomolecular level and, on the other hand, describerecovery techniques for nanoplastics to reduce their presence in food.
microplastics
nanoplastics
environment
; food chain
Impact on health caused by nanoplastics contained in food and its possible attenuation through a bioengineering process
bioaccumulation
endocrine disruptors
Journal article
https://revistas.eia.edu.co/index.php/reveia/article/download/1712/1577
2024-01-01 09:26:25
2024-01-01 09:26:25
1794-1237
2463-0950
10.24050/reia.v21i41.1712
https://doi.org/10.24050/reia.v21i41.1712
4103 pp. 1
60
2024-01-01
institution UNIVERSIDAD EIA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADEIA/logo.png
country_str Colombia
collection Revista EIA
title Impacto en la salud causado por los nanoplásticos contenidos en alimentos y su posible atenuación mediante un proceso de bioingeniería
spellingShingle Impacto en la salud causado por los nanoplásticos contenidos en alimentos y su posible atenuación mediante un proceso de bioingeniería
Erazo Ordóñez, María Jimena
Révérend Lizcano, Carlos Arturo
cadena trófica
nanoplásticos
microplásticos
alimentos
salud humana
medio ambiente
bioacumulación
disruptores endocrinos
Human health
food
microplastics
nanoplastics
environment
; food chain
bioaccumulation
endocrine disruptors
title_short Impacto en la salud causado por los nanoplásticos contenidos en alimentos y su posible atenuación mediante un proceso de bioingeniería
title_full Impacto en la salud causado por los nanoplásticos contenidos en alimentos y su posible atenuación mediante un proceso de bioingeniería
title_fullStr Impacto en la salud causado por los nanoplásticos contenidos en alimentos y su posible atenuación mediante un proceso de bioingeniería
title_full_unstemmed Impacto en la salud causado por los nanoplásticos contenidos en alimentos y su posible atenuación mediante un proceso de bioingeniería
title_sort impacto en la salud causado por los nanoplásticos contenidos en alimentos y su posible atenuación mediante un proceso de bioingeniería
title_eng Impact on health caused by nanoplastics contained in food and its possible attenuation through a bioengineering process
description A través de los siglos, las poblaciones de seres humanos asentadas en los alrededoresde a�luentes hídricos han dispuesto indiscriminadamente sus desechos arrojándolosa los ríos, lagos, océanos, y terrenos aledaños. Cuando las cantidades de desechos, ensu mayoría biodegradables son bajas, las consecuencias ambientales y sobre la saludde las comunidades bióticas son mínimas. Sin embargo, la fabricación y disposiciónen masa de materiales sintéticos no biodegradables desde mediados del siglo XX hatenido profundos efectos biológicos y ambientales. Los plásticos son el ejemplo mássigni�icativo de estos ubicuos materiales sintéticos, usualmente de un solo uso, nobiodegradables y con altas cantidades de aditivos químicos tóxicos. Debido a la altaestabilidad y resistencia del plástico, es imposible vincularlo rápidamente enprocesos que permitan su degradación y descomposición; por ello, se han convertidoen la mitad de los residuos que hoy existen en el planeta. La deriva de estosmateriales conlleva a que, bajo condiciones ambientes, paulatinamente se vayanfragmentando en partículas alcanzando las escalas de los micrómetros y losnanómetros, a estas partículas se les ha categorizado como contaminantesincidentales: micro y nanoplásticos. Hoy en día, el mundo contempla el boom de lananotecnología y cada vez más industrias se interesan por el uso de esta tecnologíaemergente; producen micro y nanoplásticos de manera intencional para serincorporados en productos cosméticos, �ibras textiles, entre muchos otrospropósitos. La contaminación de estas partículas plásticas de dimensionesimperceptibles, llega a los alimentos de consumo humano a través de la persistenciaen los ecosistemas y la bioacumulación, por diferentes vías de exposición, principalmente por ingesta en las diferentes cadenas que componenla red trófica mundial, además, de la migración del material empleado para elalmacenamiento, preservación y empaque de los alimentos. Los nanoplásticos yalgunos microplásticos al ser ingeridos atraviesan las barreras físicas epiteliales yse distribuyen por todo el organismo ingresando en prácticamente todos los tejidoscorporales, alterando su funcionamiento y aumentando la carga de enfermedad delas comunidades bióticas incluyendo la humana. Al ser considerados materialesinertes y heterogéneos, su identificación y recuperación es compleja, además deno ser completamente efectiva. El presente escrito busca revisar informaciónque permita evaluar el impacto de los nanoplásticos presentes en los alimentos,resaltando los efectos tóxicos que poseen estos materiales para la salud humanaa través de la bioacumulación y biomagnificación en las cadenas tróficas a nivelbiomolecular subcelular y, por otro lado, describir las técnicas de recuperación delos nanoplásticos para reducir su presencia en los alimentos.
description_eng Over the centuries, the populations of human beings settled in the surroundingsof water tributaries have indiscriminately disposed of their waste, throwing it intorivers, lakes, oceans, and surrounding land. When the amounts of waste, mostlybiodegradable, are low, the environmental consequences and the health of bioticcommunities are minimal. However, the mass manufacture and disposal of nonbiodegradable synthetic materials since the mid-20th century has had profoundbiological and environmental effects. Plastics are the most significant exampleof these ubiquitous synthetic materials, usually single-use, non-biodegradableand with high amounts of toxic chemical additives. Due to the high stability andresistance of plastic, it is impossible to quickly bind it in processes that allow itsdegradation and decomposition; for this reason, they have become half of thewaste that exists on the planet today. The drift of these materials leads them,under ambient conditions, to gradually fragment into particles reaching thescales of micrometers and nanometers. These particles have been categorized asincidental contaminants: micro and nanoplastics. Today, the world is witnessing the nanotechnology boom and more and more industries are interested in the useof this emerging technology; They intentionally produce micro and nanoplasticsto be incorporated into cosmetic products, textile fibers, among many otherpurposes. The contamination of these plastic particles of imperceptible dimensions,reaches food for human consumption through persistence in ecosystems andbioaccumulation, through different routes of exposure, mainly through ingestionin the different chains that make up the global trophic web, in addition, of themigration of the material used for the storage, preservation and packagingof food. When ingested, nanoplastics and some microplastics cross physicalepithelial barriers and are distributed throughout the body, entering practicallyall body tissues, altering their function and increasing the disease burden of bioticcommunities, including humans. As they are considered inert and heterogeneousmaterials, their identification and recovery are complex, in addition to not beingcompletely effective. This paper seeks to review information that allows evaluatingthe impact of nanoplastics present in food, highlighting the toxic effects that thesematerials have for human health through bioaccumulation and biomagnification infood chains at the subcellular biomolecular level and, on the other hand, describerecovery techniques for nanoplastics to reduce their presence in food.
author Erazo Ordóñez, María Jimena
Révérend Lizcano, Carlos Arturo
author_facet Erazo Ordóñez, María Jimena
Révérend Lizcano, Carlos Arturo
topicspa_str_mv cadena trófica
nanoplásticos
microplásticos
alimentos
salud humana
medio ambiente
bioacumulación
disruptores endocrinos
topic cadena trófica
nanoplásticos
microplásticos
alimentos
salud humana
medio ambiente
bioacumulación
disruptores endocrinos
Human health
food
microplastics
nanoplastics
environment
; food chain
bioaccumulation
endocrine disruptors
topic_facet cadena trófica
nanoplásticos
microplásticos
alimentos
salud humana
medio ambiente
bioacumulación
disruptores endocrinos
Human health
food
microplastics
nanoplastics
environment
; food chain
bioaccumulation
endocrine disruptors
citationvolume 21
citationissue 41
citationedition Núm. 41 , Año 2024 : .
publisher Fondo Editorial EIA - Universidad EIA
ispartofjournal Revista EIA
source https://revistas.eia.edu.co/index.php/reveia/article/view/1712
language Español
format Article
rights info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-nd/4.0
Revista EIA - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
references Moskat M., C. Bianco, F Isso, M. Vazquez; E. Corradi 2021 Plastics industry and market in Latin America and Caribbean April Plastics Industry and Market in Latin America and the Caribbean.docx - Documentos de Google Mushtaq G, Khan JA, Joseph E, Kamal MA. Nanoparticles, Neurotoxicity and neurodegenerative Diseases. Curr Drug Metab. 2015;16(8):676-84. doi: 10.2174/1389200216666150812122302. PMID: 26264205.
Liufu, SC, HN Xiao y YP Li, 2005.Adsorción de polielectrolito catiónico en la interfase sólido/líquido y dispersión de sílice nanométrica en agua. J. Col. Interfaz Sci., 285: 33-40.
Liu S, Lin G, Liu X, Yang R, Wang H, Sun Y, Chen B, Dong R. 2022. Detection of various microplastics in placentas, meconium, infant feces, breastmilk and infant formula: A pilot prospective study. Sci Total Environ. doi: 10.1016/j.scitotenv.2022.158699. Epub ahead of print. PMID: 36108868. Luo, Z; Zhou, X; Su, Y; Wang, H; Yu, R; Zhou, S; Genbo Xu, E; Xing, B. Environmental occurrence, fate, impact, and potential solution of tire microplastics: Similarities and differences with tire wear particles. 2021. Science of The Total Environment, Volume 795, 148902, ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2021.148902. https://www.sciencedirect.com/science/article/pii/S0048969721039747.
Luo, Y; Awoyemi, O; Naidu, R; Fang, C. 2023. Detection of microplastics and nanoplastics released from a kitchen blender using Raman imaging, Journal of Hazardous Materials, Volume 453, 131403, ISSN 0304-3894. https://doi.org/10.1016/j.jhazmat.2023.131403. https://www.sciencedirect.com/science/article/pii/S0304389423006866
Zbyszewski, M; Patricia, L; Corcoran, Alexandra Hockin. Comparison of the distribution and degradation of plastic debris along shorelines of the Great Lakes, North America, Journal of Great Lakes Research 2014. Vol 40, Issue 2, Pág. 288-299, ISSN 0380-1330, https://doi.org/10.1016/j.jglr.2014.02.012. (https://www.sciencedirect.com/science/article/pii/S038013301400046X)
Manfredini, N; Ilare, J Invernizzi, M; Polvara, E; Contreras, D; Sironi, S; Moscatelli, Davide & Sponchioni, Mattia. Polymer Nanoparticles for the Release of Fragrances: How the Physicochemical Properties Influence the Adsorption on Textile and the Delivery of Limonene. 2020. Industrial and Engineering Chemistry Research, 59 (28), pp. 12766 - 12773, Cited 10 times. DOI: 10.1021/acs.iecr.0c02075. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089278037&doi=10.1021%2facs.iecr.0c02075&partnerID=40&md5=7ef3919312fe1f39074f6928ca6f6935
Mesa Upegui, M. P., y Ortiz Rodríguez, C. I. (2016). Evaluación del proceso de pirólisis para la producción de diésel a nivel laboratorio a partir de residuos plásticos de industrias de alimentos. Obtenido de http://repository.uamerica.edu.co/bitstream/20.500.11839/477/1/6111667-2016-2-IQ.pdf.
Materić, Dušan; Kjær, Helle Astrid; Vallelonga, Paul; Tison, Jean-Louis; Röckmann, Thomas & Holzinger, Rupert. Nanoplastics measurements in Northern and Southern polar ice. 2022. Environmental Research, Vol 208, 12741, ISSN 0013-9351, https://doi.org/10.1016/j.envres.2022.112741. https://www.sciencedirect.com/science/article/pii/S0013935122000688.
Ministerio de Medio Ambiente y Desarrollo Sostenible. Basura Plástica. 2022. https://www.minambiente.gov.co/comunicado-de-prensa/en-2050-habria-en-el-mundo-unos-12-000-millones-de-toneladas-de-basura-plastica-si-no-se-cambian-las-pautas-de-consumo/
Mortensen, N.P; Fennell, T.R & Johnson, L.M. Unintended human ingestion of nanoplastics and small microplastics through drinking water, beverages, and food sources, NanoImpact. 2021. Vol 21, 100302, ISSN 2452-0748. https://doi.org/10.1016/j.impact.2021.100302. (https://www.sciencedirect.com/science/article/pii/S2452074821000112)
Myszograj, M. Microplastic in food and drinking water - environmental monitoring data. 2020. Sciendo. E-ISSN 2450-8594 CEER 2020; 30 (4): 0201-0209. DOI: 10.2478/ceer-2020-0060.
Li, J; Lusher, A;. Rotchell, J; Deudero, S; r Turra, A; Bråte, I; Sun, C; Hossain, M; Li, Q; Kolandhasamy, K; Shi, H. 2019. Using mussel as a global bioindicator of coastal microplastic pollution, Environmental Pollution, Volume 244, ISSN 0269-7491, https://doi.org/10.1016/j.envpol.2018.10.032. https://www.sciencedirect.com/science/article/pii/S0269749118326873.
National Oceanic and Atmospheric Administration (NOAA). What are microplastics? 2015. https://oceanservice.noaa.gov/facts/microplastics.html
Nieto, E; Montoto, T. Basuras marinas, plásticos y microplásticos: orígenes, impactos y consecuencias de una amenaza global. 2017. Área de Medio Marino de Ecologistas en Acción. ISBN:978-84-946151-9-1. https://www.ecologistasenaccion.org/wp-content/uploads/adjuntos-spip/pdf/informe-basuras-marinas.pdf
Norén, F. (2007) Small Plastic Particles in Coastal Swedish Waters. KIMO Report, Sweden. Pág. 1-11. https://www.researchgate.net/publication/284312290_Small_plastic_particles_in_C oastal_Swedish_waters
Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). Los microplásticos en los sectores de pesca y acuicultura ¿Qué sabemos? ¿Deberíamos preocuparnos? 2017. https://www.fao.org/3/ca3540es/CA3540ES.pdf
Panyam J, Labhasetwar V. Dynamics of endocytosis and exocytosis of poly(D,L-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells. Pharm Res. 2020 Feb;20(2):212-20. doi: 10.1023/a:1022219003551. PMID: 12636159.
Paul a, Valerie Stock a, Julia Cara-Carmona a, Elisa Lisicki a, Sofiya Shopova a, Valérie Fessard b, Albert Braeuning a, Holger Sieg; Linda Böhmert. 2020. Micro- and nanoplastics – current state of knowledge with the focus on oral uptake and toxicity. https://pubs.rsc.org/en/content/articlehtml/2020/na/d0na00539h
Parker Laura 2018 Datos sobre la contaminación por plástico | National Geographic
Parker Laura 2023 ¿Qué daños producen los microplásticos para el ser humano? | National Geographic
Peter G Ryan. The characteristics and distribution of plastic particles at the sea-surface off the southwestern Cape Province, South Africa, Marine Environmental Research, 1988. Vol 25, Issue 4, Pág. 249-273, ISSN 0141-1136, https://doi.org/10.1016/0141-1136(88)90015-3. (https://www.sciencedirect.com/science/article/pii/0141113688900153)
Li, Y; Li, Y; Jie Li, Zirong Song, Zhang, C; Guan, B. 2023. Toxicity of polystyrene nanoplastics to human embryonic kidney cells and human normal liver cells: Effect of particle size and Pb2+ enrichment, Chemosphere, Volume 328, 138545, ISSN 0045-6535, https://doi.org/10.1016/j.chemosphere.2023.138545. https://www.sciencedirect.com/science/article/pii/S0045653523008123.
Li, C; Gao, Y; He, S; H. Chi; Z. Li; X. Zhou; B. Yan. 2021. Quantification of Nanoplastic Uptake in Cucumber Plants by Pyrolysis Gas Chromatography/Mass Spectrometry. Environmental science & technology letters, 8, 633-638. doi: 10.1021/acs.estlett.1c00369
Polanco D. L. Estudio de factibilidad para la producción y comercialización de fuel oil a partir de residuos plásticos mediante un proceso pirolítico en Arequipa. 2019. http://re positorio.ucsp.edu.pe/bitstream/UCSP/16097/1/POLANCO_SUAREZ_DIA_RES.pdf.
Iheanacho; Odo. Neurotoxicity, oxidative stress biomarkers and haematological responses in African catfish (Clarias gariepinus) exposed to polyvinyl chloride microparticles. 2020. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, Volume 232, ISSN 1532-0456. https://doi.org/10.1016/j.cbpc.2020.108741. (https://www.sciencedirect.com/science/article/pii/S1532045620300417)
Geyer, R, Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science advances, 3(7), e1700782.
Gómez, J. G. (2016). Diagnóstico del impacto del plástico - botellas sobre el medio ambiente: un estado del arte. Obtenido de https://repository.usta.edu.co/bitstream/handle/11634/10047/Gomez2016.pdf?sequence=1.
Gregory, M.R. & Ryan, P.G. (1997). Pelagic Plastics and Other Seaborne Persistent Synthetic Debris: A Review of Southern Hemisphere Perspectives. In: Coe, J.M., Rogers, D.B. (eds) Marine Debris. Springer Series on Environmental Management. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8486-1_6
Greenpeace. (octubre de 2021). La contaminación plástica en Colombia y el mundo. Obtenido de http://greenpeace.co/pdf/reporte_plasticos.pdf.
Gigault J, Halle AT, Baudrimont M, Pascal PY, Gauffre F, Phi TL, El Hadri H, Grassl B, Reynaud S. Current opinion: What is a nanoplastic? Environ Pollut. 2018. doi: 10.1016/j.envpol.2018.01.024. Epub 2018 Jan 19. PMID: 29370948.
Hou, Z; Meng, R; Chen, G; Lai, T; Qing, R; Hao, S; Deng, J; Wang, B. Distinct accumulation of nanoplastics in human intestinal organoids. 2022. Science of The Total Environment. Volume 838, Part 2. ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2022.155811. (https://www.sciencedirect.com/science/article/pii/S0048969722029084)
Hwang, J; Choi, D; Han, S; Choi, J; Hong, J. 2019. An assessment of the toxicity of polypropylene microplastics in human derived cells, Science of The Total Environment, Volume 684, ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2019.05.071. https://www.sciencedirect.com/science/article/pii/S0048969719320832.
Huang, D; Chen, H; Shen, M; Tao, J; Chen, S; Yin, L; Zhou, W; Wang, X; Xiao, R; Li, R. 2022. Recent advances on the transport of microplastics/nanoplastics in abiotic and biotic compartments. Journal of Hazardous Materials, Volume 438, 129515, ISSN 0304-3894. https://doi.org/10.1016/j.jhazmat.2022.129515. (https://www.sciencedirect.com/science/article/pii/S0304389422013085)
Hyun-jong, B; Arya, G. Assembly mechanism of surface-functionalized nanocubes. 2020. Nanoscale, 2022, 14, 3917. DOI: 10.1039/D1NR07995F
Natalia, P. 2021. Chemical Analysis of Microplastics and Nanoplastics: Challenges, Advanced Methods, and Perspectives, Chemical Reviews 2021 121 (19), 11886-11936 DOI: 10.1021/acs.chemrev.1c00178
Li X, S.L; Chen L; Mei Q; Dong B; Dai X.; Ding G & Zeng E.Y. Microplastics in sewage sludge from the wastewater treatment plants in China. 2018. Water Research, 142, Pág. 75 - 85. DOI: 10.1016/j.watres.2018.05.034. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047603942&doi=10.1016%2fj.watres.2018.05.034&partnerID=40&md5=7bc32665557fefae87fd37e174246078
Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., ... & Law, K. L. 2015. Plastic waste inputs from land into the ocean. Science, 347(6223), 768-771.
Ji-Su Kim; Hee-Jee Lee; Seung-Kyu Kim; and Hyun-Jung Kim. 2018. Environmental Science & Technology, 12819-12828. DOI: 10.1021/acs.est.8b04180
Kashiwada S. Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environ Health Perspect. 2006 Nov;114(11):1697-702. doi: 10.1289/ehp.9209. PMID: 17107855; PMCID: PMC1665399.
Khan, Ibrahim; Khalid Saeed, Idrees Khan. Nanoparticles: Properties, applications and toxicities. 2019. Arabian Journal of Chemistry, Volume 12, Issue 7. ISSN 1878-5352. https://doi.org/10.1016/j.arabjc.2017.05.011. (https://www.sciencedirect.com/science/article/pii/S1878535217300990)
Khan, M; Ouladsmane, M; Alammari, A; Azam, M. 2021. Bisphenol A leaches from packaging to fruit juice commercially available in markets, Food Packaging and Shelf Life, Volume 28, 100678, ISSN 2214-2894. https://doi.org/10.1016/j.fpsl.2021.100678. https://www.sciencedirect.com/science/article/pii/S2214289421000466.
Kankanige, D; Babel, S. 2020. Smaller-sized micro-plastics (MPs) contamination in single-use PET-bottled water in Thailand. Sci Total Environ. 15;717:137232. doi: 10.1016/j.scitotenv.2020.137232. Epub 2020 Feb 8. PMID: 32062244.
Kik K, Bukowska B, Sicińska P. 2020. Polystyrene nanoparticles: Sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms. Environ Pollut. 2020 Jul;262:114297. doi: 10.1016/j.envpol.2020.114297. Epub. PMID: 32155552.
Kirstein, I; Hensel, F; Gomiero, A; Iordachescu, L; Vianello, A; Wittgren, H; Vollertsen, J. 2021. Drinking plastics? – Quantification and qualification of microplastics in drinking water distribution systems by µFTIR and Py-GCMS, Water Research, Volume 188, 116519, ISSN 0043-1354. https://doi.org/10.1016/j.watres.2020.116519. https://www.sciencedirect.com/science/article/pii/S004313542031054X.
Leppänen, I., Lappalainen, T., Lohtander, T. et al. Capturing colloidal nano- and microplastics with plant-based nanocellulose networks. 2022. Nat Commun 13, 1814. https://doi.org/10.1038/s41467-022-29446-7
Liebmann, B; Köppel, Sebastian; Königshofer, Philipp; Bucsics, Theresa; Reiberger, Thomas; Schwabl, Philipp. 2018. Assessment of microplastic concentrations in human stool - Preliminary results of a prospective study. https://www.researchgate.net/publication/328410183_Assessment_of_microplastic_concentrations_in_human_stool_-_Preliminary_results_of_a_prospective_study
Plastics Europe. Plásticos – Situación en 2020 Un análisis de los datos sobre producción, demanda y residuos de plásticos en Europa. 2020. https://plasticseurope.org/es/wp-content/uploads/sites/4/2021/11/ES_Plastics_the_facts-WEB-2020_May21_final_updatedJuly2021.pdf
Programa de las Naciones Unidas para el Medio Ambiente (PNUMA). Un problema doble: el plástico también emite potentes gases de efecto invernadero. 2018. https://www.unep.org/es/noticias-y-reportajes/reportajes/un-problema-doble-el-plastico-tambien-emite-potentes-gases-de
Gall, S.C. & Thompson, R.C. The impact of debris on marine life, Marine Pollution Bulletin. 2015. Vol. 92, Issues 1–2. Pages 170-179, ISSN 0025-326X, https://doi.org/10.1016/j.marpolbul.2014.12.041. (https://www.sciencedirect.com/science/article/pii/S0025326X14008571) Garrido, E;; Costanzo, V. 2022. Microplastics in food commodities – A food safety review on human exposure through dietary sources. Food Safety and Quality Series No. 18. Rome, FAO. https://doi.org/10.4060/cc2392en German Federal Institute for Risk Assessment (BfR). Presence of microplastics and nanoplastics in food, with particular focus on seafood. 2016. EFSA Journal. Vol 14, Issue 6. https://doi.org/10.2903/j.efsa.2016.4501
Zaki, M; Aris, A. An overview of the effects of nanoplastics on marine organisms. 2022. Science of The Total Environment Volume 831, 154757, ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2022.154757. https://www.sciencedirect.com/science/article/pii/S0048969722018502.
Wang, M, Rücklin, M; Poelmann, R; Mooij, C; Fokkema, M; Gerda E.M. Lamers, Merijn A.G. de Bakker, Ernest Chin, Lilla J. Bakos, Federica Marone, Bert J. Wisse, Marco C. de Ruiter, Shixiong Cheng, Luthfi Nurhidayat, Martina G. Vijver, Michael K. Richardson. 2023. Nanoplastics causes extensive congenital malformations during embryonic development by passively targeting neural crest cells, Environment International, Volume 173, 107865, ISSN 0160-4120. https://doi.org/10.1016/j.envint.2023.107865. (https://www.sciencedirect.com/science/article/pii/S0160412023001381)
Winkler, A; Fumagalli, F; Cella, C; Gilliland, D; Tremolada, P; Valsesia, A. 2022. Detection and formation mechanisms of secondary nanoplastic released from drinking water bottles, Water Research, Volume 222, 118848, ISSN 0043-1354, https://doi.org/10.1016/j.watres.2022.118848. https://www.sciencedirect.com/science/article/pii/S0043135422007953.
Wright SL & Kelly FJ. Plastic and Human Health: A Micro Issue? 2017. Environ Sci Technol. 20;51(12):6634-6647. doi: 10.1021/acs.est.7b00423. PMID: 28531345. https://pubmed.ncbi.nlm.nih.gov/28531345/
Xu X, Zhou G, Lei K, LeBlanc GA, An L. 2019. Phthalate Esters and Their Potential Risk in PET Bottled Water Stored under Common Conditions. Int J Environ Res Public Health. doi: 10.3390/ijerph17010141. PMID: 31878152; PMCID: PMC6982309.
Yafei, Shi; Chai, Jiaqi; Xu, Tao; Ding, Lihu; Huang, Meijie; Gan, Fangmao; Pi, Kewu; Gerson, Andrea R & Yang, Jiakuan. Microplastics contamination associated with low-value domestic source organic solid waste: A review. (2023) Science of the Total Environment, 857, art. no. 159679 DOI: 10.1016/j.scitotenv.2022.159679. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85140474780&doi=10.1016%2fj.scitotenv.2022.159679&partnerID=40&md5=aae9f5d382319659bdef7971615347b7
Yeo IC, Shim KY, Kim K, Jeong CB. Maternal exposure to nanoplastic induces transgenerational toxicity in the offspring of rotifer Brachionus koreanus. Comp Biochem Physiol C Toxicol Pharmacol. 2023 Jul;269:109635. doi: 10.1016/j.cbpc.2023.109635. Epub 2023 Apr 23. PMID: 37088197.
Yu, J., Huo, R., Wu, C. et al. Influence of interface structure on dielectric properties of epoxy/alumina nanocomposites. Macromol. Res. 20, 816–826 (2012). https://doi.org/10.1007/s13233-012-0122-2
Yuan, Z; Nag, R & Cummins, E. Human health concerns regarding microplastics in the aquatic environment - From marine to food systems. 2022. Science of The Total Environment, Vol 823, 153730, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2022.153730. (https://www.sciencedirect.com/science/article/pii/S0048969722008221)
Zambrano Romero, G, A. Efecto de la nanoestructura sobre las propiedades térmicas y magnéticas de nanomateriales tipo 2D y 0D. 2020. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. Vol. 44 Núm. 170. https://doi.org/10.18257/raccefyn.916. https://raccefyn.co/index.php/raccefyn/article/view/916
Zettler, E.R; Mincer, T.J; Amaral-Zettler; L.A. Life in the "plastisphere": microbial communities on plastic marine debris. Environ Sci Technol. 2013 Jul 2;47(13):7137-46. doi: 10.1021/es401288x.
Wang, X; Zhao, J; Ding, S; Zhang, H. 2023 .Interaction of polystyrene nanoplastics with human fibrinogen, International Journal of Biological Macromolecules, Volume 238,124049, ISSN 0141-8130. https://doi.org/10.1016/j.ijbiomac.2023.124049. https://www.sciencedirect.com/science/article/pii/S0141813023009431.
Wang, X; Jia, Z; Zhou, X; Su, L; Wang, M; Tian Wang, Hongyan Zhang. 2023. Nanoplastic-induced vascular endothelial injury and coagulation dysfunction in mice, Science of The Total Environment, Volume 865, 161271, ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2022.161271. (https://www.sciencedirect.com/science/article/pii/S0048969722083759)
Vitali, C; Ruud, J.B; Hans-Gerd, P, W.F. Nielen, M. 2023. Microplastics and nanoplastics in food, water, and beverages; part I. occurrence, TrAC Trends in Analytical Chemistry, Volume 159, 116670, ISSN 0165-9936. https://doi.org/10.1016/j.trac.2022.116670. https://www.sciencedirect.com/science/article/pii/S0165993622001534.
Programa de las Naciones Unidas para el Medio Ambiente (PNUMA).. Our planet is choking on plastic. 2018. https://www.unep.org/interactives/beat-plastic-pollution/?gclid=CjwKCAjwtp2bBhAGEiwAOZZTuCy8zOYsQO0luCnlJonF0g1QO4JPYOuW_zsqcOo7zEKX60_3rPxjIxoCnnUQAvD_BwE
Seri, N.A; Abdullah, A.L; Salleh, N.A.M, Hwai, A.T.S; Yasin, Z. 2022. The occurrence and consequences of microplastics and nanoplastics in fish gastrointestinal tract. Journal of Survey in Fisheries Sciences. 8. 107-133. 10.18331/SFS2022.8.3.9. DOI:10.18331/SFS2022.8.3.9. https://www.researchgate.net/publication/361414216_The_occurrence_and_consequences_of_microplastics_and_nanoplastics_in_fish_gastrointestinal_tract
Programa de las Naciones Unidas para el Medio Ambiente (ONU). Plásticos de un solo uso Una hoja de ruta para la sostenibilidad. 2018. file:///C:/Users/Usuario/Downloads/plasticosdeunsolouso.pdf
Prenner S; Allesch A; Staudner M; Rexeis M; Schwingshackl M; Huber-Humer M & Part F. Static modelling of the material flows of micro- and nanoplastic particles caused by the use of vehicle tyres. 2021. Environmental Pollution, 290, art. no. 118102. DOI: 10.1016/j.envpol.2021.118102. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85114706788&doi=10.1016%2fj.envpol.2021.118102&partnerID=40&md5=a39650836714a01f589f0273aefce502
Protect Wildlife and Nature (WWF). Naturaleza sin Plástico:Evaluación de la ingestión humana de plásticos presentes en la naturaleza. 2019. https://wwflac.awsassets.panda.org/downloads/evaluacion_de_la_ingestion_humana_de_plasticos_presentes_en_la_naturaleza_1_1.pdf
Remya, N.S & Mohanan, P.V. Chapter 3 - Safety and toxicity concerns of nanosystems, Editor(s): Chandra Prakash Sharma, In Micro and Nano Technologies, Drug Delivery Nanosystems for Biomedical Applications. 2018. Elsevier, Pág. 33-44. ISBN 9780323509220. https://doi.org/10.1016/B978-0-323-50922-0.00003-1. (https://www.sciencedirect.com/science/article/pii/B9780323509220000031)
Perinelli D,R; Palmieri G,F; Cespi M; Bonacucina G. Encapsulation of Flavours and Fragrances into Polymeric Capsules and Cyclodextrins Inclusion Complexes: An Update. Molecules. 2020 Dec 11;25(24):5878. doi: 10.3390/molecules25245878. PMID: 33322621; PMCID: PMC7763935.
Rodríguez-Hernández AG, Chiodoni A, Bocchini S, Vazquez-Duhalt R. 3D printer waste, a new source of nanoplastic pollutants. Environ Pollut. 2020 Dec;267:115609. doi: 10.1016/j.envpol.2020.115609. Epub 2020 Sep 7. PMID: 33254724.
Royer S,J; Ferrón S, Wilson S,T; Karl D,M. Production of methane and ethylene from plastic in the environment. 2018 Aug 1;13(8):e0200574. doi: 10.1371/journal.pone.0200574. PMID: 30067755; PMCID: PMC6070199.
Sakali, A; Coello, D; Haïlaf, A; Egea-Corbacho, A; Albendín, G; Arellano, J; Brigui, J; Quiroga, J; Rodríguez-Barroso, R. A new protocol to assess the microplastics in sewage sludge. 2021. Journal of Water Process Engineering, Volume 44, 102344, ISSN 2214-7144, https://doi.org/10.1016/j.jwpe.2021.102344. https://www.sciencedirect.com/science/article/pii/S2214714421004311
Senathirajah K; Attwood S; Bhagwat G; Carbery M; Wilson S & Palanisami T. Estimation of the mass of microplastics ingested - A pivotal first step towards human health risk assessment. 2021. J Hazard Mater. 404(Pt B):124004. doi: 10.1016/j.jhazmat.2020.124004. Epub 2020 Oct 6. PMID: 33130380.
Sherrington, C. (2016). Plastics in the marine environment IUCN. https://www.iucn.org/resources/issues-brief/marine-plastic-pollution#:~:text=At%20least%2014%20million%20tons,causes%20severe%20injuries%20and%20death.
Unión Europea (UE). Nanomateriales. 2011. https://echa.europa.eu/es/regulations/nanomaterials
SCHEER (Scientific Committee on Health, Environmental and Emerging Risks) Statement on emerging health and environmental issues (2018), 20 December 2018. https://health.ec.europa.eu/system/files/2019-02/scheer_s_002_0.pdf
Shopova S; Sieg H & Braeuning A. Risk assessment and toxicological research on micro- and nanoplastics after oral exposure via food products. 2020. EFSA Journal, 18 (S1), art. no. e181102 DOI: 10.2903/j.efsa.2020.e181102. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096918265&doi=10.2903%2fj.efsa.2020.e181102&partnerID=40&md5=7c947c9a5d39b07747ec0bfe8011f19b
Schwabl P; Köppel S; Königshofer P; Bucsics T; Trauner M; Reiberger T; Liebmann B. Detection of Various Microplastics in Human Stool: A Prospective Case Series. Ann Intern Med. 2019. doi: 10.7326/M19-0618. Epub 2019 Sep 3. PMID: 31476765.
Stojkovic, M; Ortuño, F; Han, D; Stojkovic, P; Dopazo, J; M. Stankovic. 2023. Polystyrene nanoplastics affect transcriptomic and epigenomic signatures of human fibroblasts and derived induced pluripotent stem cells: Implications for human health, Environmental Pollution, Volume 320, 120849, ISSN 0269-7491. https://doi.org/10.1016/j.envpol.2022.120849. (https://www.sciencedirect.com/science/article/pii/S0269749122020644)
Tian L; Skoczynska E; van Putten R.-J; Leslie H.A & Gruter G.-J.M. Quantification of polyethylene terephthalate micro- and nanoplastics in domestic wastewater using a simple three-step method (2023) Science of the Total Environment, 857, art. no. 159209. DOI: 10.1016/j.scitotenv.2022.159209 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85140140128&doi=10.1016%2fj.scitotenv.2022.159209&partnerID=40&md5=0a320207d3a89c35bd5fe27e6b529a92
The University of Newcastle - Dalberg. No Plastic in Nature: Assessing Plastic Ingestion from Nature to People. 2019. https://awsassets.panda.org/downloads/plastic_ingestion_press_singles.pdf
The American Academy of Pediatrics. 2017. Bottles and bisphenol A (BPA). https://www.healthychildren.org/Spanish/ages-stages/baby/feeding-nutrition/Paginas/Baby-Bottles-And-Bisphenol-A-BPA.aspx
Thompson RC, Moore CJ, vom Saal FS, Swan SH. Plastics, the environment and human health: current consensus and future trends. Philos Trans R Soc Lond B Biol Sci. 2009. doi: 10.1098/rstb.2009.0053. PMID: 19528062; PMCID: PMC2873021.
Torres-Ruiz, M; González, M; Morales, M; Martin-Folgar, R; González, M; Cañas-Portilla, A; De la Vieja, A. Neurotoxicity and endocrine disruption caused by polystyrene nanoparticles in zebrafish embryo. 2023. Science of The Total Environment. Volume 874, ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2023.162406. (https://www.sciencedirect.com/science/article/pii/S0048969723010227)
Tu P, Xue J, Niu H, Tang Q, Mo Z, Zheng X, Wu L, Chen Z, Cai Y, Wang X. 2023. Deciphering Gut Microbiome Responses upon Microplastic Exposure via Integrating Metagenomics and Activity-Based Metabolomics. Metabolites. 13(4):530. doi: 10.3390/metabo13040530. PMID: 37110188; PMCID: PMC10145956.
German Federal Institute for Risk Assessment (BfR), Department of Food Safety, Unit Effect-based Analytics and Toxicogenomics Unit and Nanotoxicology Junior Research Group. Sofiya Shopova,Holger Sieg & Albert Braeuning. Risk assessment and toxicological research on micro- and nanoplastics after oral exposure via food products 2020. Vol 18, Issue S1 Special Issue: EU-FORA Series 3. https://doi.org/10.2903/j.efsa.2020.e181102
Fundación Vasca para la Seguridad Agroalimentaria (ELIKA). 2021. Micro y Nanoplásticos. https://seguridadalimentaria.elika.eus/fichas-de-peligros/micro-y-nanoplasticos/
Aminu, I; Nahil, M; Williams, P. Pyrolysis-plasma/catalytic reforming of post-consumer waste plastics for hydrogen production. 2023. Catalysis Today. Volume 420, ISSN 0920-5861. https://doi.org/10.1016/j.cattod.2023.114084. (https://www.sciencedirect.com/science/article/pii/S0920586123000913)
Abbasi, S. Routes of human exposure to micro(nano)plastics. 2021. Current Opinion in Toxicology, 27, Pág. 41 - 46. DOI: 10.1016/j.cotox.2021.08.004. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85120854010&doi=10.1016%2fj.cotox.2021.08.004&partnerID=40&md5=e9c9d75f4ee506d6f9c5525762d8d314
Abbasi, S; Keshavarzi, B; Moore, F; Delshab, H; Soltani, N; Sorooshian, A. 2017. Investigation of microrubbers, microplastics and heavy metals in street dust: a study in Bushehr city, Iran. Environ Earth Sci 76(23):798. https://doi.org/10.1007/s12665-017-7137-0
Ali, S; Al-Tohamy, T; Eleni Koutra, Mohamed S. Moawad, Michael Kornaros, Ahmed M. Mustafa, Yehia A.-G. Mahmoud, Abdelfattah Badr, Mohamed E.H. Osman, Tamer Elsamahy, Haixin Jiao, Jianzhong Sun. Nanobiotechnological advancements in agriculture and food industry: Applications, nanotoxicity, and future perspectives. 2021. Science of The Total Environment, Volume 792, 148359, ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2021.148359. (https://www.sciencedirect.com/science/article/pii/S0048969721034306)
Annangi, B; Villacorta, A; Vela, L; Tavakolpournegari, A; Marcos, R; Hernández, A. 2023. Effects of true-to-life PET nanoplastics using primary human nasal epithelial cells, Environmental Toxicology and Pharmacology, Volume 100, 104140, ISSN 1382-6689. https://doi.org/10.1016/j.etap.2023.104140. https://www.sciencedirect.com/science/article/pii/S1382668923000820.
Fundación Heinrich Böll. Atlas del plástico Datos y cifras sobre el mundo de los polímeros sintéticos. 2019. https://co.boell.org/sites/default/files/2021-02/Plastic%20Atlas%202019%20cambio.pdf
Almroth B.M; Åström L.; Roslund S; Petersson H; Johansson M & Persson N.-K. Quantifying shedding of synthetic fibers from textiles; a source of microplastics released into the environment. 2018. Environmental Science and Pollution Research, 25 (2), Pág. 1191 - 1199. DOI: 10.1007/s11356-017-0528-7. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85032340088&doi=10.1007%2fs11356-017-0528-7&partnerID=40&md5=2e38c8ca07530fff8692a2cc9d4461d3
Anthony L. Andrady. Microplastics in the marine environment, Marine Pollution Bulletin. 2011. Vol 62, Issue 8, Pág. 1596-1605, ISSN 0025-326X, https://doi.org/10.1016/j.marpolbul.2011.05.030. (https://www.sciencedirect.com/science/article/pii/S0025326X11003055)
Arias A.H; Alfonso M.B; Girones L; Piccolo M.C & Marcovecchio J.E. Synthetic microfibers and tyre wear particles pollution in aquatic systems: Relevance and mitigation strategies. 2022. Environmental Pollution, 295, art. no. 118607. DOI: 10.1016/j.envpol.2021.118607. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121806317&doi=10.1016%2fj.envpol.2021.118607&partnerID=40&md5=c316adb10be27a47fa9e692d166dec98
Arika, B; Alp, F; Ozfidan-Konakci, C; Balci, M; Elbasan, F; Yildiztugay, E; Cavusoglu, H. Fe2O3-modified graphene oxide mitigates nanoplastic toxicity via regulating gas exchange, photosynthesis, and antioxidant system in Triticum aestivum. 2022. Chemosphere, Volume 307, Part 4, 136048, ISSN 0045-6535. https://doi.org/10.1016/j.chemosphere.2022.136048. (https://www.sciencedirect.com/science/article/pii/S0045653522025413)
Agencia para Sustancias Tóxicas y el Registro de Enfermedades. (ATSDR). 2000. Reseña Toxicológica de los Bifenilos Policlorados (BPCs) (en inglés). Atlanta, GA: Departamento de Salud y Servicios Humanos de EE. UU., Servicio de Salud Pública.
Austen, K; MacLean, J; Balanzategui, D; Hölker, F. Microplastic inclusion in birch tree roots, 2022. Science of The Total Environment, Volume 808, 152085, ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2021.152085. https://www.sciencedirect.com/science/article/pii/S0048969721071618)
Auta, H.S; Abioye, O.P; Aransiola, S.A; Bala, J.D; Chukwuemeka, V.I; Hassan, A; Aziz, A; Fauziah, S.H. 2022. Enhanced microbial degradation of PET and PS microplastics under natural conditions in mangrove environment, Journal of Environmental Management, Volume 304, 114273, ISSN 0301-4797. https://doi.org/10.1016/j.jenvman.2021.114273. https://www.sciencedirect.com/science/article/pii/S0301479721023355
Bhatt P, Pandey SC, Joshi S, Chaudhary P, Pathak VM, Huang Y, Wu X, Zhou Z, Chen S. Nanobioremediation: A sustainable approach for the removal of toxic pollutants from the environment. J Hazard Mater. 2022 Apr 5;427:128033. doi: 10.1016/j.jhazmat.2021.128033. Epub 2021 Dec 9. PMID: 34999406.
Bhagwat G, O'Connor W, Grainge I, Palanisami T. Understanding the Fundamental Basis for Biofilm Formation on Plastic Surfaces: Role of Conditioning Films. Front Microbiol. 2021 Jun 25;12:687118. doi: 10.3389/fmicb.2021.687118. PMID: 34248907; PMCID: PMC8267902
Akçan R, Aydogan HC, Yildirim MŞ, Taştekin B & Sağlam N. Nanotoxicity: a challenge for future medicine. 2020. Turk J Med Sci. Jun 23;50(4):1180-1196. doi: 10.3906/sag-1912-209. PMID: 32283898; PMCID: PMC7379444. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7379444/
Beltrán, M; Marcilla, A. Tecnología de polímeros procesado y propiedades. Universidad de Alicante. 2012. Pág. 17. https://books.google.com.co/books?hl=es&lr=&id=jxilUUn4_QAC&oi=fnd&pg=PA15&dq=POLIMEROS&ots=eCPy5xgswC&sig=loOhDwg6U4a75udeAiW21NK_n38&redir_esc=y#v=onepage&q&f=false
Dang, F; Qingyu Wang, Yingnan Huang, Yujun Wang, Baoshan Xing. 2022. Key knowledge gaps for One Health approach to mitigate nanoplastic risks, Eco-Environment & Health. Volume 1, Issue 1. ISSN 2772-9850. https://doi.org/10.1016/j.eehl.2022.02.001. (https://www.sciencedirect.com/science/article/pii/S2772985022000011)
Comité Científico de la Agencia Española de Seguridad Alimentaria y Nutrición (AESAN) sobre la presencia y la seguridad de los plásticos como contaminantes en los alimentos. 2019. https://www.aesan.gob.es/AECOSAN/docs/documentos/seguridad_alimentaria/evaluacion_riesgos/PLASTICOS_ALIMENTOS.pdf
Conti, G; Ferrante, M; Banni, M; Favara, C; Nicolosi, I; Cristaldi, A; Fiore, M; Zuccarello, P. 2020. Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population, Environmental Research, Volume 187, 109677, ISSN 0013-9351, https://doi.org/10.1016/j.envres.2020.109677. (https://www.sciencedirect.com/science/article/pii/S0013935120305703)
Chortarea S, Gupta G, Saarimäki LA, Netkueakul W, Manser P, Aengenheister L, Wichser A, Fortino V, Wick P, Greco D, Buerki-Thurnherr T. 2023. Transcriptomic profiling reveals differential cellular response to copper oxide nanoparticles and polystyrene nanoplastics in perfused human placenta, Environment International, 108015, ISSN 0160-4120. https://doi.org/10.1016/j.envint.2023.108015. https://www.sciencedirect.com/science/article/pii/S016041202300288X.
Czubacka E, Czerczak S, Kupczewska-Dobecka MM. 2021. The overview of current evidence on the reproductive toxicity of dibutyl phthalate. Int J Occup Med Environ Health. doi: 10.13075/ijomeh.1896.01658. Epub 2020 Nov 13. PMID: 33223541.
Bergmann, Melanie; Gutow, Lars & Klages, Michael. Marine Anthropogenic Litter. ISBN: 978-3-319-37653-0. https://link.springer.com/book/10.1007/978-3-319-16510-3
Dalmau-Soler, J; Ballesteros-Cano; R., Boleda, M.R. et al. 2021. Microplastics from headwaters to tap water: occurrence and removal in a drinking water treatment plant in Barcelona Metropolitan area (Catalonia, NE Spain). Environ Sci Pollut Res 28, 59462–59472. https://doi.org/10.1007/s11356-021-13220-1
Dietz, K.F; Herth, S. 2013. Plant nanotoxicology, Trends in Plant Science, Volume 16, Issue 11. ISSN 1360-1385, https://doi.org/10.1016/j.tplants.2011.08.003. https://www.sciencedirect.com/science/article/pii/S1360138511001695.
Deba, S, Núñez, P. 2017. Efectos del bisfenol A en la reproducción femenina, Medicina Reproductiva y Embriología Clínica, Volume 4, Issue 1, ISSN 2340-9320, https://doi.org/10.1016/j.medre.2017.02.001. https://www.sciencedirect.com/science/article/pii/S2340932017300099.
Comisión del Códex Alimentarius. REP21/CAC. 8 – 15, 17-18 de noviembre y 14 de diciembre de 2021. https://www.fao.org/fao-who-codexalimentarius/sh-proxy/es/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-701-44%252FFINAL%252520REPORT%252FREP21_CACs.pdf
De-la-Torre, GE. Microplastics: an emerging threat to food security and human health. J Food Sci Technol. 2020. doi: 10.1007/s13197-019-04138-1. Epub 2019 Oct 19. PMID: 32327770; PMCID: PMC7171031.
Desforges JP, Galbraith M, Dangerfield N, Ross PS. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean. Mar Pollut Bull. 2014. doi: 10.1016/j.marpolbul.2013.12.035. PMID: 24398418.
Diggle, A., & Walker, T. R. 2022. Environmental and Economic Impacts of Mismanaged Plastics and Measures for Mitigation. Environments, 9(2), 15. MDPI AG. Retrieved from http://dx.doi.org/10.3390/environments9020015
Ellen Macarthur Foundation.The New Plastics Economy: Rethinking the future of plastics & catalysing action. 2017. https://ellenmacarthurfoundation.org/the-new-plastics-economy-rethinking-the-future-of-plastics-and-catalysing
Elizalde, V.M; García-Fabila, M.M; Campuzano, M.E.; Bustamante, P. 2012. Exposición prenatal a ftalatos. Anemia materna, duración de la gestación y somatometría del recién nacido, Clínica e Investigación en Ginecología y Obstetricia, Volume 39, Issue 4, ISSN 0210-573X, https://doi.org/10.1016/j.gine.2010.11.005. https://www.sciencedirect.com/science/article/pii/S0210573X10001322.
Eriksen M, Lebreton LC, Carson HS, Thiel M, Moore CJ, Borerro JC, Galgani F, Ryan PG, Reisser J. Plastic Pollution in the World's Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. 2014. doi: 10.1371/journal.pone.0111913. PMID: 25494041; PMCID: PMC4262196.
Erik R. Zettler; Tracy J. Mincer & Linda A. Amaral-Zettler. Life in the “Plastisphere”: Microbial Communities on Plastic Marine Debris. 2013. Environmental Science & Technology. 47 (13), 7137-7146. DOI: 10.1021/es401288x
Ferrante, M; Oliveri Conti, G; Zuccarello, P. 2020. Patent method for the extraction and determination of micro- and nano- plastics in organic and inorganic matrix samples: An application on vegetals, MethodsX, Volume 7, 100989, ISSN 2215-0161, https://doi.org/10.1016/j.mex.2020.100989. https://www.sciencedirect.com/science/article/pii/S2215016120302090.
Fadare, O; Okoffo, E; Olasehinde, E. Microparticles and microplastics contamination in African table salts. 2021. Marine Pollution Bulletin, Volume 164, 112006, ISSN 0025-326X, https://doi.org/10.1016/j.marpolbul.2021.112006. https://www.sciencedirect.com/science/article/pii/S0025326X21000400
Comisión del Códex Alimentarius. CX/FFP 21/35/3. 20 de septiembre – 25 de octubre de 2021. https://www.fao.org/fao-who-codexalimentarius/sh-proxy/fr/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-722-35%252FWD%252Ffp35_03s.pdf
Carbery, M; O'Connor, W; Palanisami, T. Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. 2018. Environment International, Volume 115, ISSN 0160-4120. https://doi.org/10.1016/j.envint.2018.03.007. (https://www.sciencedirect.com/science/article/pii/S0160412017322298)
Bretas, c; Navajas, S; Bes-Piá, M.A; Mendoza-Roca, J.A. Methodology for removing microplastics and other anthropogenic microparticles from sludge dewatering system. 2022. Journal of Environmental Management, Volume 314, 115010, ISSN 0301-4797. https://doi.org/10.1016/j.jenvman.2022.115010. https://www.sciencedirect.com/science/article/pii/S0301479722005837)
Billmeyer, Fred W, Jr. Ciencia de los polímeros. (PDF 2020). https://books.google.com.co/books?hl=es&lr=&id=Fe0FEAAAQBAJ&oi=fnd&pg=PR5&dq=POLIMEROS&ots=e3x4n_fanJ&sig=feB1JvMzQFMY7ISGqcbEpHI_kLM&redir_esc=y#v=onepage&q=POLIMEROS&f=false
Boggiano, H; Berté, R; Scarpettini, A; Cortés, E; Maier, S; Bragas, A (2021). Determination of Nanoscale Mechanical Properties of Polymers via Plasmonic Nanoantennas. https://www.researchgate.net/publication/354142002_Determination_of_Nanoscale_Mechanical_Properties_of_Polymers_via_Plasmonic_Nanoantennas/citation/download
Bosker, T; Bouwman, L.J;. Brun, N.R; Behrens, P; Vijver, M.G. 2019. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum, Chemosphere, Volume 226, ISSN 0045-6535. https://doi.org/10.1016/j.chemosphere.2019.03.163. https://www.sciencedirect.com/science/article/pii/S0045653519306095.
Bouwmeester H, Hollman PC, Peters RJ. Potential Health Impact of Environmentally Released Micro- and Nanoplastics in the Human Food Production Chain: Experiences from Nanotoxicology. 2015. Environ Sci Technol. 4;49(15):8932-47. doi: 10.1021/acs.est.5b01090. PMID: 26130306. https://pubmed.ncbi.nlm.nih.gov/26130306/
Bustamante-Montes; Borja-Aburto; Hernández-Valero; García-Fábila, Patricia; Borja-Bustamante; González-Álvarez, Germán Antonio Acosta-Gordillo. 2021. Phthalates exposure during pregnancy a study in a Mexican cohort, Toxicology Reports, Volume 8, ISSN 2214-7500. https://doi.org/10.1016/j.toxrep.2021.05.006. https://www.sciencedirect.com/science/article/pii/S2214750021000974.
Calder, M; Herrera, A. Polímeros adhesivos y formación de uniones a través de reacciones de polimerización y fuerzas intermoleculares. 2019. Educación Química por Universidad Nacional Autónoma de México. Volumen 30, Núm. 2. DOI: https://doi.org/10.22201/fq.18708404e.2019.2.68197
Calderón Sáenz, F. La Producción de Combustibles Vehiculares a partir de Plásticos de Desecho. 2016. Obtenido de http://www.drcalderonlabs.com/Procesos/Pirólisis/Proceso%20de%20Pirólisis.pdf.
Campos, C. A; Tenoza, F. (2018). Combustibles fuel-oíl obtenidos de residuos plásticos mediante pirólisis, Pucallpa – Ucayali, 2018. Obtenido de http://repositorio.ucv.edu.pe/handle/UCV/32380.
Calderon, E; Hansen, P; Rodríguez, A; C.M. Blettler, M; Syberg, K; Khan, F. 2019. Microplastics in the Digestive Tracts of Four Fish Species from the Ciénaga Grande de Santa Marta Estuary in Colombia. Water, Air and Soil Pollution, 230(257). https://doi.org/10.1007/s11270-019-4313-8
European Chemicals Agency (ECHA). Microplastics. 2018. https://echa.europa.eu/hot-topics/microplastics
Chen, J; Chen, X; Yang, X, Hao, S; Tang, Y; Zhang, T; J; Xu, J. Surface functionalization-dependent inflammatory potential of polystyrene nanoplastics through the activation of MAPK/ NF-κB signaling pathways in macrophage Raw 264.7. 2023. Ecotoxicology and Environmental Safety, Volume 251, ISSN 0147-6513. https://doi.org/10.1016/j.ecoenv.2023.114520. (https://www.sciencedirect.com/science/article/pii/S0147651323000246)
Carpenter, E; Smith, Jr. Plastics on the Sargasso Sea Surface. Science. 17 de marzo de 1972. Vol. 175, número 4027 págs. 1240 - 1241. DOI: 10.1126/ciencia.175.4027.1240
Castro-Correia C, Correia-Sá L, Norberto S, Delerue-Matos C, Domingues V, Costa-Santos C, Fontoura M, Calhau C. 2018. Phthalates and type 1 diabetes: is there any link? Environ Sci Pollut Res Int. doi: 10.1007/s11356-018-1997-z. Epub 2018 Apr 21. PMID: 29680886; PMCID: PMC6028856.
Ford, H; Jones, N; Davies, A; Godley, B; Jambeck, J; Napper, I; Suckling, C; Gareth J. Williams, Woodall, L; Koldewey, H. 2022. The fundamental links between climate change and marine plastic pollution, Science of The Total Environment, Volume 806, Part 1,150392, ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2021.150392. https://www.sciencedirect.com/science/article/pii/S0048969721054693.
Catarino, A; Thompson, R; Sanderson, W; Theodore B. Henry. 2016. Development and optimization of a standard method for extraction of microplastics in mussels by enzyme digestion of soft tissues. https://setac.onlinelibrary.wiley.com/doi/10.1002/etc.3608
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2024-01-01
date_accessioned 2024-01-01 09:26:25
date_available 2024-01-01 09:26:25
url https://revistas.eia.edu.co/index.php/reveia/article/view/1712
url_doi https://doi.org/10.24050/reia.v21i41.1712
issn 1794-1237
eissn 2463-0950
doi 10.24050/reia.v21i41.1712
citationstartpage 4103 pp. 1
citationendpage 60
url3_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/1712/1577
_version_ 1797194855235977216