Principales herramientas moleculares empleadas en la ciencia animal

La domesticación animal y la ganadería son actividades desarrolladas por el hombre desde hace unos 10000 años, que ha permitido obtener una asombrosa cantidad de razas y atributos en especies animales, que han cubierto parte de las necesidades alimentarias, utilitarias y culturales del hombre. Con el desarrollo de la genética y la biología molecular durante el siglo XX, se han logrado optimizar muchas de esas prácticas milenarias. El progreso de técnicas como la PCR, la detección de marcadores moleculares, la secuenciación de DNA, RNA y proteínas, así como las herramientas bioinformáticas, han permitido conocer la constitución y organización del genoma de numerosas especies, su variación, la relación fenotipo-genotipo, la expresión genética... Ver más

Guardado en:

2027-4297

5

2013-07-12

480

496

http://purl.org/coar/access_right/c_abf2

info:eu-repo/semantics/openAccess

id 3274a8e05cb6f0dfac72d941c9f51bcc
record_format ojs
spelling Principales herramientas moleculares empleadas en la ciencia animal
LIPMAN,D. National Center for Biotechnology information. [serial online] 2013 [Citado 30 Dic 2013]. Disponible en: http://www.ncbi.nlm.nih.gov/snp/?term=Bos taurus.
MONIS, P.; GIGLIO, S.; KEEGAN, A. y THOMPSON, R. 2005. Emerging technologies for the detection and genetic characterization of protozoan parasites. Trends Parasitol. 21:340-346.
METZKER, M. 2010. Sequencing technologies - the next generation. Nature reviews. Genetics 11(1): 31-46.
Mac SWEENEY, C. y MACKIE, R. 2012. Micro-organisms and ruminant digestion: state of knowledge, trands and future prospects. Commission On Genetic Resources for Food and Agriculture (Editores), Roma: disponible en: http://www.fao.org/docrep/016/ap099e/ap099e.pdf.
MATUKUMALLI, L.; LAWLEY, C.; SCHNABEL, R.; TAYLOR, J.; ALLAN, M.; HEATON, M.; O’CONNELL, J.; MOORE, S.; SMITH, T.; SONSTEGARD, T. y VAN TASSELL, C. 2009. Development and characterization of a high density SNP genotyping assay for cattle. PloS one 4(4): e5350
MATSUZAKI, H.; LOI, H.; DONG, S.; TSAI, Y.; FANG, J.; LAW, J.; DI, X.; et al., 2004. Parallel genotyping of over 10,000 SNPs using a one-primer assay on a high-density oligonucleotide array. Genome research 14(3): 414-25.
MASKOS, U. y SOUTHERN, E. 1992. Oligonucleotide hybridisations on glass supports: a novel linker for oligonucleotide synthesis and hybridisation properties of oligonucleotides synthesised in situ. Nucleic Acids Research 20(7): 1679-1684.
LUQUE, J. y HERRÁEZ, A. 2001. Texto ilustrado de biología molecular e ingeniería genética: conceptos, técnicas y aplicaciones en ciencias de la salud. Editorial Elsevier. Madrid.
LITT, M. y LUTY, J. 1989. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. The American Journal of Human Genetics 44:397-401.
KIM, M.; MORRISON, M. y YU, Z. 2011. Status of the phylogenetic diversity census of ruminal microbiomes. FEMS microbiology ecology 76(1): 49-63.
NELSON, M,; MARNELLOS, G.; KAMMERER, S.; HOYAL, C.; SHI, M.; CANTOR, C. y BRAUN, A. 2004. Large-Scale Validation of Single Nucleotide Polymorphisms in Gene Regions. Genome Research 14(8): 1664-1668.
INTERNATIONAL CHICKEN GENOME SEQUENCING CONSORTIUM. 2004. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432: 695-716.
HYTEN, D.; SONG, Q.; FICKUS, E.; QUIGLEY, C.; LIM, J.; CHOI, I.; HWANG, E.; PASTOR-CORRALES, M. y CREGAN, P. 2010. High-throughput SNP discovery and assay development in common bean. BMC genomics 11: 475-483.
HUNGATE, R. 1966. The rumen and its microbes. Editorial Academic Press, New York.
HOBSON, P. y STEWART, C. (eds). 1997. The Rumen Microbial Ecosystem (2da edicion). Editorial Springer Netherlands, Dordrecht, Holanda.
HILLIER, W.; MILLER, W.; BIRNEY, E.; WARREN, W.; HARDISON, R.; PONTING C.; et al . 2004. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432(7018): 695-716.
HEBERT, P.; CYWINSKA, A.; BALL, S. y DE WAARD, J. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society B 270: 313-321.
FRANKHAM, R.; BALLOU, J. y BRISCOE, D. 2004. Introduction to conservation genetics. Editorial Cambridge University Press, Cambridge. GEORGES, M. 2012. Impact of high-throughput genotyping and sequencing on the identification of genes and variants underlying phenotypic variation in domestic cattle. En: Womack, J. (eds). Bovine Genomic. Editorial John Wiley y Sons, Ltd, Oxford.
FRANK, D. y PACE, N. 2008. Gastrointestinal microbiology enters the metagenomics era. Current opinion in gastroenterology 24(1): 4-10.
MULLIS, K.; FALOONA, F.; SCHARF, S.; SAIKI, R.; HORN, G. y ERLICH, H. 1986. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Old Spring Harbor Symposia on Quantitative Biology 51(1):263-73.
OSOEGAWA, K.; WOON, P.; ZHAO, B.; FRENGEN, E.; TATENO, M.; CATANESE, J. y DE JONG, P. 1998. An improved approach for construction of bacterial artificial chromosome libraries. Genomics 52(1): 1-8.
DUAN, Z.; GUO, Y. y LIU, J. 2006. Application of modern molecular biology techniques to study micro-ecosystem in the rumen. Wei Sheng Wu Xue Bao 46: 166-169.
info:eu-repo/semantics/article
Text
http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/publishedVersion
http://purl.org/redcol/resource_type/ARTREV
http://purl.org/coar/resource_type/c_dcae04bc
http://purl.org/coar/resource_type/c_6501
ZIMIN.; A.; DELCHER.; A.; FLOREA.; L.; KELLEY.; D.; SCHATZ.; M.; PUIU.; D.; HANRAHAN.; F.; PERTEA.; G.; VAN TASSELL.; C.; SONSTEGARD.; T.; MARÇAIS.; G.; ROBERTS.; M.; SUBRAMANIAN.; P.; YORKE.; J. y SALZBERG.; S. 2009. A whole-genome assembly of the domestic cow.; Bos taurus. Genome biology 10(4): R42.
PAREEK, C.; SMOCZYNSKI, R. y TRETYN, A. 2011. Sequencing technologies and genome sequencing. Journal of applied genetics 52(4): 413-435.
ZABEAU.; M. y VOS.; P. 1993. Selective restriction fragment amplification: a general method for DNA fingerprinting. EP Patent. publication. No. 0534858:B2.
YANG.; W.; KANG.; X. ; YANG.; Q.; LIN.; Y. y FANG.; M. 2013. Review on the development of genotyping methods for assessing farm animal diversity. Journal of Animal Science and Biotechnology 4: 2-8.
XIAO.; L. 2010. Molecular epidemiology of cryptosporidiosis: an update. Experimental parasitology 124(1): 80-9.
TAUTZ, D. 1989. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Research 17:6463-6471. THORNTON, P. 2010. Livestock production: recent trends,future prospects. Philosophical Transactions B 365: 2853-2867. VENTER, J.; ADAMS, D.; MYERS, E.; et al., 2001. The sequence of the human genome. Science 291(5507): 1304-1351. WILLIAMS.; J.; KUBEILIK.; A.; LIVAK.; K.; RAFALSKI.; J. y TINGEY.; S. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18:6531-6535.
SCHOOK, L.; BEEVER, J.; ROGERS, J.; HUMPHRAY, S.; ARCHIBALD, A.; CHARDON, P.; MILAN, D.; ROHRER, G. y EVERSOLE, K. 2005. Swine Genome Sequencing Consortium (SGSC): a strategic roadmap for sequencing the pig genome. Comparative and Functinal Genomics (4): 251-255.
SANGER, F.; AIR, G.; BARRELL, B.; BROWN, N.; COULSON, A.; FIDDES, J.; HUTCHISON, C.; SLOCOMBE, P. y SMITH, M. 1977. Nucleotide sequence of bacteriophage ?X174 DNA. Nature 265(5596): 687-695.
SAMBROOK, J., RUSSELL, D. 2001. Molecular Cloning: A Laboratory Manual. (3ra edición) Editorial Cold Spring Harbor Laboratory Press, Nueva York.
SAIKI, R.; GELFAND, D.; STOFFEL, S.; SCHARF, S.; HIGUCHI, R.; HORN, G.; MULLIS, K. y ERLICH, H. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239(4839): 487-491.
POLIDO, P.; FERREIRA, F.; ALBERTON, O. y HÜLSE, S. 2012. Marcadores moleculares aplicados no melhoramento genético de bovinos. Arquivos de Ciências Veterinárias e Zoologia da UNIPAR 15(2): 161-169.
FERREIRA, E.; DE LANA, M.; CARNEIRO, M.; REIS, A.; PAES, D.; DA SILVA, E.; SCHALLIG, H. y GONTIJO, C. 2007. Comparison of serological assays for the diagnosis of canine visceral leishmaniasis in animals presenting different clinical manifestations. Veterinary parasitology 146(3-4): 235-241.
DI BELLA, J.; BAO, Y.; GLOOR, G.; BURTON, J. y REID, G. 2013. High throughput sequencing methods and analysis for microbiome research. Journal of microbiological methods 5(3): 401-414.
Publication
ARANGUREN, YANI
DNA
PCR
variación genética.
5
2
Núm. 2 , Año 2013 : RECIA 5(2):JULIO-DICIEMBRE
Artículo de revista
DALE, J. y VON SCHANTZ, M. 2002. From Genes to Genomes: Concepts and Applications of DNA Technology. Editorial John Wiley y Sons, Ltd. Londres. DJARI, A.; ESQUERRÉ, D., WEISS, B., MARTINS, F., MEERSSEMAN, C., BOUSSAHA, M., KLOPP, C. y ROCHA D. 2013.Gene-based single nucleotide polymorphism discovery in bovine muscle using next-generation transcriptomic sequencing. BMC Genomics 14:307.
application/pdf
Universidad de Sucre
Revista Colombiana de Ciencia Animal - RECIA
MONTES V., DONICER
https://revistas.unisucre.edu.co/index.php/recia/article/view/459
MACHADO, ELWI
Español
BAUER, O. 1976. Fitogenética aplicada. Editorial Limusa. México D.F. BENSON, D.; KARSCH-MIZRACHI, I.; LIPMAN, D.; OSTELL, J. y WHEELER, D. 2005. GenBank. Nucleic acids research 33: D34–D38.
DA SILVA, J.; ANDRÉ, M.; DA FONSECA, A.; LOPES, C.; DA SILVA, D.; DE ANDRADE, S.; OLIVEIRA, C. y BARBOSA, J. 2013. Molecular and serological prevalence of Babesia bovis and Babesia bigemina in water buffaloes in the north region of Brazil. Veterinary parasitology 197(3-4): 678-681. DEKKERS, J.C.M. 2004. Commercial application of marker and gene assisted selection in livestock: Strategies and lessons. Journal of Animal Science, v.82, p.313-328
CARLEER, J.; PASTORET, P. y ANSAY, M. 1978. Isozyme characterization of cattle (Bos taurus) and American buffalo (Bison bison) cell cultures. Animal Blood Groups Biochemical Genetics 9(3):175-179.
BREYNE, P.; DREESEN, R.; CANNOOT, B.; ROMBAUT, D.; VANDEPOELE, K.; ROMBAUTS, S.; VANDERHAEGHEN, R.; INZÉ, D. y ZABEAU, M. 2003. Quantitative cDNA-AFLP analysis for genome-wide expression studies. Molecular genetics and genomics 269: 173-179.
BOVINE HAPMAP CONSORTIUM. 2009. Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science 324(5926):528-532.
BOVINE GENOME SEQUENCING AND ANALYSIS CONSORTIUM. 2009. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324(5926):522-528.
BOTSTEIN, D.; WHITE, R.; SKOLNICK, M. y DAVIS, R. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. The American Journal of Human Genetics 32: 314-331.
diagnostico
AZOFEIFA, A. 2006. Uso de marcadores moleculares en plantas; aplicaciones en frutales del trópico. Agronomía Mesoamericana, 17: 221-242.
APARICIO, S.; CHAPMAN, J.; STUPKA, E.; PUTNAM, N.; CHIA, J.; DEHAL, P.; CHRISTOFFELS, A. et al . Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297(5585): 1301–1310.
ANTONANGELO, A.; COLOMBI, D.; CURI, R.; BRAZ, A.; OLIVEIRA, T. y MOTAL, M. 2012. Detection and quantification of Duffy antigen on bovine red blood cell membranes using a polyclonal antibody. Pesq. Vet. Bras. 32(9): 936–940.
La domesticación animal y la ganadería son actividades desarrolladas por el hombre desde hace unos 10000 años, que ha permitido obtener una asombrosa cantidad de razas y atributos en especies animales, que han cubierto parte de las necesidades alimentarias, utilitarias y culturales del hombre. Con el desarrollo de la genética y la biología molecular durante el siglo XX, se han logrado optimizar muchas de esas prácticas milenarias. El progreso de técnicas como la PCR, la detección de marcadores moleculares, la secuenciación de DNA, RNA y proteínas, así como las herramientas bioinformáticas, han permitido conocer la constitución y organización del genoma de numerosas especies, su variación, la relación fenotipo-genotipo, la expresión genética y el metabolismo. Asimismo, con estos avances se han perfeccionado técnicas en las ciencias pecuarias, como el diagnóstico de enfermedades y zoonosis, la selección asistida, el mejoramiento genético, la reproducción, el estudio de diversidad genética y nutrición animal y el desarrollo de tecnologías de producción. Aun cuando muchas de los métodos de manejo y mejoramiento tradicionales no podrán ser reemplazadas, es necesaria la inclusión de nuevas técnicas moleculares, por lo tanto la presente revisión describe las principales tecnologías aplicadas en esta área, demostrando como el uso de herramientas moleculares es cada vez más necesario en términos técnicos y económicos.
https://creativecommons.org/licenses/by-nc-sa/4.0/
PCR.
Genetic Variation
diagnostics
The animal domestication and livestock activities are developed by man since about 10,000 years ago, which has led to a staggering number of animal breeds and attributes, which have covered part of the need food, cultural and utility of man. With development of genetics and molecular biology in the XX century, has been made to optimized many of these ancient practices. The progress of techniques such as PCR, detection of molecular markers, sequencing of DNA, RNA and proteins, and bioinformatics tools, have allowed to know the constitution and organization of the genome of many species, its variation, genotype-phenotype relationship, gene expression and metabolism. In addition, these advances have perfected techniques in animal science, such as diagnosis of diseases and zoonoses, assisted selection, breeding, reproduction, the study of genetic diversity, animal nutrition and the development of production technologies. Although many of the methods of management and traditional breeding may not be replaced, it is necessary to include new molecular techniques, therefore the present review describes the main technologies applied in this area, demonstrating how the use of molecular tools is increasingly more necessary in technical and economic terms.
DNA
Main molecular tools employed in animal science
Journal article
https://revistas.unisucre.edu.co/index.php/recia/article/download/459/505
2013-07-12T00:00:00Z
2013-07-12T00:00:00Z
2027-4297
10.24188/recia.v5.n2.2013.459
https://doi.org/10.24188/recia.v5.n2.2013.459
480
496
2013-07-12
institution UNIVERSIDAD DE SUCRE
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDESUCRE/logo.png
country_str Colombia
collection Revista Colombiana de Ciencia Animal - RECIA
title Principales herramientas moleculares empleadas en la ciencia animal
spellingShingle Principales herramientas moleculares empleadas en la ciencia animal
ARANGUREN, YANI
MONTES V., DONICER
MACHADO, ELWI
variación genética.
diagnostico
PCR.
Genetic Variation
diagnostics
title_short Principales herramientas moleculares empleadas en la ciencia animal
title_full Principales herramientas moleculares empleadas en la ciencia animal
title_fullStr Principales herramientas moleculares empleadas en la ciencia animal
title_full_unstemmed Principales herramientas moleculares empleadas en la ciencia animal
title_sort principales herramientas moleculares empleadas en la ciencia animal
title_eng Main molecular tools employed in animal science
description La domesticación animal y la ganadería son actividades desarrolladas por el hombre desde hace unos 10000 años, que ha permitido obtener una asombrosa cantidad de razas y atributos en especies animales, que han cubierto parte de las necesidades alimentarias, utilitarias y culturales del hombre. Con el desarrollo de la genética y la biología molecular durante el siglo XX, se han logrado optimizar muchas de esas prácticas milenarias. El progreso de técnicas como la PCR, la detección de marcadores moleculares, la secuenciación de DNA, RNA y proteínas, así como las herramientas bioinformáticas, han permitido conocer la constitución y organización del genoma de numerosas especies, su variación, la relación fenotipo-genotipo, la expresión genética y el metabolismo. Asimismo, con estos avances se han perfeccionado técnicas en las ciencias pecuarias, como el diagnóstico de enfermedades y zoonosis, la selección asistida, el mejoramiento genético, la reproducción, el estudio de diversidad genética y nutrición animal y el desarrollo de tecnologías de producción. Aun cuando muchas de los métodos de manejo y mejoramiento tradicionales no podrán ser reemplazadas, es necesaria la inclusión de nuevas técnicas moleculares, por lo tanto la presente revisión describe las principales tecnologías aplicadas en esta área, demostrando como el uso de herramientas moleculares es cada vez más necesario en términos técnicos y económicos.
description_eng The animal domestication and livestock activities are developed by man since about 10,000 years ago, which has led to a staggering number of animal breeds and attributes, which have covered part of the need food, cultural and utility of man. With development of genetics and molecular biology in the XX century, has been made to optimized many of these ancient practices. The progress of techniques such as PCR, detection of molecular markers, sequencing of DNA, RNA and proteins, and bioinformatics tools, have allowed to know the constitution and organization of the genome of many species, its variation, genotype-phenotype relationship, gene expression and metabolism. In addition, these advances have perfected techniques in animal science, such as diagnosis of diseases and zoonoses, assisted selection, breeding, reproduction, the study of genetic diversity, animal nutrition and the development of production technologies. Although many of the methods of management and traditional breeding may not be replaced, it is necessary to include new molecular techniques, therefore the present review describes the main technologies applied in this area, demonstrating how the use of molecular tools is increasingly more necessary in technical and economic terms.
author ARANGUREN, YANI
MONTES V., DONICER
MACHADO, ELWI
author_facet ARANGUREN, YANI
MONTES V., DONICER
MACHADO, ELWI
topicspa_str_mv variación genética.
diagnostico
topic variación genética.
diagnostico
PCR.
Genetic Variation
diagnostics
topic_facet variación genética.
diagnostico
PCR.
Genetic Variation
diagnostics
citationvolume 5
citationissue 2
citationedition Núm. 2 , Año 2013 : RECIA 5(2):JULIO-DICIEMBRE
publisher Universidad de Sucre
ispartofjournal Revista Colombiana de Ciencia Animal - RECIA
source https://revistas.unisucre.edu.co/index.php/recia/article/view/459
language Español
format Article
rights http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/4.0/
references LIPMAN,D. National Center for Biotechnology information. [serial online] 2013 [Citado 30 Dic 2013]. Disponible en: http://www.ncbi.nlm.nih.gov/snp/?term=Bos taurus.
MONIS, P.; GIGLIO, S.; KEEGAN, A. y THOMPSON, R. 2005. Emerging technologies for the detection and genetic characterization of protozoan parasites. Trends Parasitol. 21:340-346.
METZKER, M. 2010. Sequencing technologies - the next generation. Nature reviews. Genetics 11(1): 31-46.
Mac SWEENEY, C. y MACKIE, R. 2012. Micro-organisms and ruminant digestion: state of knowledge, trands and future prospects. Commission On Genetic Resources for Food and Agriculture (Editores), Roma: disponible en: http://www.fao.org/docrep/016/ap099e/ap099e.pdf.
MATUKUMALLI, L.; LAWLEY, C.; SCHNABEL, R.; TAYLOR, J.; ALLAN, M.; HEATON, M.; O’CONNELL, J.; MOORE, S.; SMITH, T.; SONSTEGARD, T. y VAN TASSELL, C. 2009. Development and characterization of a high density SNP genotyping assay for cattle. PloS one 4(4): e5350
MATSUZAKI, H.; LOI, H.; DONG, S.; TSAI, Y.; FANG, J.; LAW, J.; DI, X.; et al., 2004. Parallel genotyping of over 10,000 SNPs using a one-primer assay on a high-density oligonucleotide array. Genome research 14(3): 414-25.
MASKOS, U. y SOUTHERN, E. 1992. Oligonucleotide hybridisations on glass supports: a novel linker for oligonucleotide synthesis and hybridisation properties of oligonucleotides synthesised in situ. Nucleic Acids Research 20(7): 1679-1684.
LUQUE, J. y HERRÁEZ, A. 2001. Texto ilustrado de biología molecular e ingeniería genética: conceptos, técnicas y aplicaciones en ciencias de la salud. Editorial Elsevier. Madrid.
LITT, M. y LUTY, J. 1989. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. The American Journal of Human Genetics 44:397-401.
KIM, M.; MORRISON, M. y YU, Z. 2011. Status of the phylogenetic diversity census of ruminal microbiomes. FEMS microbiology ecology 76(1): 49-63.
NELSON, M,; MARNELLOS, G.; KAMMERER, S.; HOYAL, C.; SHI, M.; CANTOR, C. y BRAUN, A. 2004. Large-Scale Validation of Single Nucleotide Polymorphisms in Gene Regions. Genome Research 14(8): 1664-1668.
INTERNATIONAL CHICKEN GENOME SEQUENCING CONSORTIUM. 2004. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432: 695-716.
HYTEN, D.; SONG, Q.; FICKUS, E.; QUIGLEY, C.; LIM, J.; CHOI, I.; HWANG, E.; PASTOR-CORRALES, M. y CREGAN, P. 2010. High-throughput SNP discovery and assay development in common bean. BMC genomics 11: 475-483.
HUNGATE, R. 1966. The rumen and its microbes. Editorial Academic Press, New York.
HOBSON, P. y STEWART, C. (eds). 1997. The Rumen Microbial Ecosystem (2da edicion). Editorial Springer Netherlands, Dordrecht, Holanda.
HILLIER, W.; MILLER, W.; BIRNEY, E.; WARREN, W.; HARDISON, R.; PONTING C.; et al . 2004. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432(7018): 695-716.
HEBERT, P.; CYWINSKA, A.; BALL, S. y DE WAARD, J. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society B 270: 313-321.
FRANKHAM, R.; BALLOU, J. y BRISCOE, D. 2004. Introduction to conservation genetics. Editorial Cambridge University Press, Cambridge. GEORGES, M. 2012. Impact of high-throughput genotyping and sequencing on the identification of genes and variants underlying phenotypic variation in domestic cattle. En: Womack, J. (eds). Bovine Genomic. Editorial John Wiley y Sons, Ltd, Oxford.
FRANK, D. y PACE, N. 2008. Gastrointestinal microbiology enters the metagenomics era. Current opinion in gastroenterology 24(1): 4-10.
MULLIS, K.; FALOONA, F.; SCHARF, S.; SAIKI, R.; HORN, G. y ERLICH, H. 1986. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Old Spring Harbor Symposia on Quantitative Biology 51(1):263-73.
OSOEGAWA, K.; WOON, P.; ZHAO, B.; FRENGEN, E.; TATENO, M.; CATANESE, J. y DE JONG, P. 1998. An improved approach for construction of bacterial artificial chromosome libraries. Genomics 52(1): 1-8.
DUAN, Z.; GUO, Y. y LIU, J. 2006. Application of modern molecular biology techniques to study micro-ecosystem in the rumen. Wei Sheng Wu Xue Bao 46: 166-169.
ZIMIN.; A.; DELCHER.; A.; FLOREA.; L.; KELLEY.; D.; SCHATZ.; M.; PUIU.; D.; HANRAHAN.; F.; PERTEA.; G.; VAN TASSELL.; C.; SONSTEGARD.; T.; MARÇAIS.; G.; ROBERTS.; M.; SUBRAMANIAN.; P.; YORKE.; J. y SALZBERG.; S. 2009. A whole-genome assembly of the domestic cow.; Bos taurus. Genome biology 10(4): R42.
PAREEK, C.; SMOCZYNSKI, R. y TRETYN, A. 2011. Sequencing technologies and genome sequencing. Journal of applied genetics 52(4): 413-435.
ZABEAU.; M. y VOS.; P. 1993. Selective restriction fragment amplification: a general method for DNA fingerprinting. EP Patent. publication. No. 0534858:B2.
YANG.; W.; KANG.; X. ; YANG.; Q.; LIN.; Y. y FANG.; M. 2013. Review on the development of genotyping methods for assessing farm animal diversity. Journal of Animal Science and Biotechnology 4: 2-8.
XIAO.; L. 2010. Molecular epidemiology of cryptosporidiosis: an update. Experimental parasitology 124(1): 80-9.
TAUTZ, D. 1989. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Research 17:6463-6471. THORNTON, P. 2010. Livestock production: recent trends,future prospects. Philosophical Transactions B 365: 2853-2867. VENTER, J.; ADAMS, D.; MYERS, E.; et al., 2001. The sequence of the human genome. Science 291(5507): 1304-1351. WILLIAMS.; J.; KUBEILIK.; A.; LIVAK.; K.; RAFALSKI.; J. y TINGEY.; S. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18:6531-6535.
SCHOOK, L.; BEEVER, J.; ROGERS, J.; HUMPHRAY, S.; ARCHIBALD, A.; CHARDON, P.; MILAN, D.; ROHRER, G. y EVERSOLE, K. 2005. Swine Genome Sequencing Consortium (SGSC): a strategic roadmap for sequencing the pig genome. Comparative and Functinal Genomics (4): 251-255.
SANGER, F.; AIR, G.; BARRELL, B.; BROWN, N.; COULSON, A.; FIDDES, J.; HUTCHISON, C.; SLOCOMBE, P. y SMITH, M. 1977. Nucleotide sequence of bacteriophage ?X174 DNA. Nature 265(5596): 687-695.
SAMBROOK, J., RUSSELL, D. 2001. Molecular Cloning: A Laboratory Manual. (3ra edición) Editorial Cold Spring Harbor Laboratory Press, Nueva York.
SAIKI, R.; GELFAND, D.; STOFFEL, S.; SCHARF, S.; HIGUCHI, R.; HORN, G.; MULLIS, K. y ERLICH, H. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239(4839): 487-491.
POLIDO, P.; FERREIRA, F.; ALBERTON, O. y HÜLSE, S. 2012. Marcadores moleculares aplicados no melhoramento genético de bovinos. Arquivos de Ciências Veterinárias e Zoologia da UNIPAR 15(2): 161-169.
FERREIRA, E.; DE LANA, M.; CARNEIRO, M.; REIS, A.; PAES, D.; DA SILVA, E.; SCHALLIG, H. y GONTIJO, C. 2007. Comparison of serological assays for the diagnosis of canine visceral leishmaniasis in animals presenting different clinical manifestations. Veterinary parasitology 146(3-4): 235-241.
DI BELLA, J.; BAO, Y.; GLOOR, G.; BURTON, J. y REID, G. 2013. High throughput sequencing methods and analysis for microbiome research. Journal of microbiological methods 5(3): 401-414.
DALE, J. y VON SCHANTZ, M. 2002. From Genes to Genomes: Concepts and Applications of DNA Technology. Editorial John Wiley y Sons, Ltd. Londres. DJARI, A.; ESQUERRÉ, D., WEISS, B., MARTINS, F., MEERSSEMAN, C., BOUSSAHA, M., KLOPP, C. y ROCHA D. 2013.Gene-based single nucleotide polymorphism discovery in bovine muscle using next-generation transcriptomic sequencing. BMC Genomics 14:307.
BAUER, O. 1976. Fitogenética aplicada. Editorial Limusa. México D.F. BENSON, D.; KARSCH-MIZRACHI, I.; LIPMAN, D.; OSTELL, J. y WHEELER, D. 2005. GenBank. Nucleic acids research 33: D34–D38.
DA SILVA, J.; ANDRÉ, M.; DA FONSECA, A.; LOPES, C.; DA SILVA, D.; DE ANDRADE, S.; OLIVEIRA, C. y BARBOSA, J. 2013. Molecular and serological prevalence of Babesia bovis and Babesia bigemina in water buffaloes in the north region of Brazil. Veterinary parasitology 197(3-4): 678-681. DEKKERS, J.C.M. 2004. Commercial application of marker and gene assisted selection in livestock: Strategies and lessons. Journal of Animal Science, v.82, p.313-328
CARLEER, J.; PASTORET, P. y ANSAY, M. 1978. Isozyme characterization of cattle (Bos taurus) and American buffalo (Bison bison) cell cultures. Animal Blood Groups Biochemical Genetics 9(3):175-179.
BREYNE, P.; DREESEN, R.; CANNOOT, B.; ROMBAUT, D.; VANDEPOELE, K.; ROMBAUTS, S.; VANDERHAEGHEN, R.; INZÉ, D. y ZABEAU, M. 2003. Quantitative cDNA-AFLP analysis for genome-wide expression studies. Molecular genetics and genomics 269: 173-179.
BOVINE HAPMAP CONSORTIUM. 2009. Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science 324(5926):528-532.
BOVINE GENOME SEQUENCING AND ANALYSIS CONSORTIUM. 2009. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324(5926):522-528.
BOTSTEIN, D.; WHITE, R.; SKOLNICK, M. y DAVIS, R. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. The American Journal of Human Genetics 32: 314-331.
AZOFEIFA, A. 2006. Uso de marcadores moleculares en plantas; aplicaciones en frutales del trópico. Agronomía Mesoamericana, 17: 221-242.
APARICIO, S.; CHAPMAN, J.; STUPKA, E.; PUTNAM, N.; CHIA, J.; DEHAL, P.; CHRISTOFFELS, A. et al . Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297(5585): 1301–1310.
ANTONANGELO, A.; COLOMBI, D.; CURI, R.; BRAZ, A.; OLIVEIRA, T. y MOTAL, M. 2012. Detection and quantification of Duffy antigen on bovine red blood cell membranes using a polyclonal antibody. Pesq. Vet. Bras. 32(9): 936–940.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_dcae04bc
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2013-07-12
date_accessioned 2013-07-12T00:00:00Z
date_available 2013-07-12T00:00:00Z
url https://revistas.unisucre.edu.co/index.php/recia/article/view/459
url_doi https://doi.org/10.24188/recia.v5.n2.2013.459
eissn 2027-4297
doi 10.24188/recia.v5.n2.2013.459
citationstartpage 480
citationendpage 496
url2_str_mv https://revistas.unisucre.edu.co/index.php/recia/article/download/459/505
_version_ 1797159538200150016