Modelamiento y simulación de un electrolizador para la producción de HHO en Matlab-Simulink®

Los electrolizadores funcionan mediante un proceso electroquímico, sus derivados (H2, O2, y HHO) debido a la electrólisis del  agua  son  utilizados  como  combustibles  enriquecedores,  siendo  más  limpios  que  la  gasolina  y  diesel.  Este  artículo  presenta el modelo dinámico de un electrolizador alcalino que utiliza un electrolito (KOH o NaHCO3) disuelto en agua destilada  para  acelerar  la  producción  de  oxihidrógeno  (HHO... Ver más

Guardado en:

0122-820X

2422-5053

24

2019-05-01

6

15

http://purl.org/coar/access_right/c_abf2

info:eu-repo/semantics/openAccess

Universidad Francisco de Paula Santander - 2020

id 2fbc487ee579086bdb4202c5b6b4597f
record_format ojs
spelling Modelamiento y simulación de un electrolizador para la producción de HHO en Matlab-Simulink®
Electrolizador alcalino
Respuestas
Universidad Francisco de Paula Santander
Artículo de revista
24
EES
Matlab-Simulink®
Simulación
Modelo dinámico
2
Los electrolizadores funcionan mediante un proceso electroquímico, sus derivados (H2, O2, y HHO) debido a la electrólisis del  agua  son  utilizados  como  combustibles  enriquecedores,  siendo  más  limpios  que  la  gasolina  y  diesel.  Este  artículo  presenta el modelo dinámico de un electrolizador alcalino que utiliza un electrolito (KOH o NaHCO3) disuelto en agua destilada  para  acelerar  la  producción  de  oxihidrógeno  (HHO).  El  modelo  muestra  el  cambio  de  fase  que  ocurre  en  el  interior de la celda electrolítica. Se utilizó el software EES® para determinar los valores de entalpía, entropía, y energía libre que varían durante la reacción electroquímica, las ecuaciones fueron simuladas en Matlab-Simulink® para observar su comportamiento dinámico. Las simulaciones fueron realizadas variando cada 5 g el electrolito hasta llegar a 20 g. El caudal de HHO con hidróxido de potasio (20 g) es superior a 0.02 L/s, y con bicarbonato de sodio (20 g) está por encima de 0.0006 L/s, permitiendo confirmar lo que se enuncia en la literatura de celdas alcalinas, donde se establece que el electrolito más eficiente para su conversión energética es KOH
García Pabón, Juan José
Vera Duarte, Luis Emilio
Bermúdez Santaella, José Ricardo
Rincón Castrillo, Erick Daniel
info:eu-repo/semantics/publishedVersion
W. Osorio and Ó. H. Giraldo, “Sobre la termodinámica de las soluciones electrolíticas,” Rev. Fac. Ing. Univ. Antioquia, vol. 40, pp. 7–21, 2007.
R. Battino, “Comments on the teaching of chemistry, doing chemistry demonstrations, and a passion for chemical thermodynamics,” J. Chem. Thermodyn., vol. 123, pp. 74–78, 2018.
M. L. Lladó and A. H. Jubert, “Trabajo útil y su relación con la variación de energía de Gibbs,” Educ. Quim., vol. 22, no. 3, pp. 271–276, 2011.
T. Wilberforce et al., “Modelling and simulation of Proton Exchange Membrane fuel cell with serpentine bipolar plate using MATLAB,” Int. J. Hydrogen Energy, vol. 42, no. 40, pp. 25639–25662, 2017.
M. M. De Souza, R. S. Gomes, and A. L. De Bortoli, “A model for direct ethanol fuel cells considering variations in the concentration of the species,” Int. J. Hydrogen Energy, vol. 43, no. 29, pp. 13475–13488, 2018.
O. Ulleberg, “Modeling of advanced alkaline electrolyzers: a system simulation approach,” Int. J. Hydrogen Energy, vol. 28, pp. 21–33, 2003.
A. Ursúa and P. Sanchis, “Static-dynamic modelling of the electrical behaviour of a commercial advanced alkaline water electrolyser,” Int. J. Hydrogen Energy, vol. 37, no. 24, pp. 18598–18614, 2012.
M. Sánchez, E. Amores, L. Rodríguez, and C. Clemente-Jul, “Modelado y simulación de sistemas de producción de hidrógeno vía electrolisis alcalina a partir de energías renovables,” in Congreso Iberoamericano de Hidrógeno y Pilas de Combustible 2017, 2017, pp. 183–186.
G. Yan et al., “An Arrhenius equation-based model to predict the residual stress relief of post weld heat treatment of Ti-6Al-4V plate,” J. Manuf. Process., vol. 32, pp. 763–772, 2018.
K. Naveršnik and R. Jurečič, “Humidity-corrected Arrhenius equation: The reference condition approach,” Int. J. Pharm., vol. 500, no. 1–2, pp. 360–365, 2016.
Text
D. Michel, “Test of the formal basis of Arrhenius law with heat capacities,” Phys. A Stat. Mech. its Appl., vol. 510, pp. 188–199, 2018.
http://purl.org/redcol/resource_type/ART
M. Hammoudi, C. Henao, K. Agbossou, Y. Dubé, and M. L. Doumbia, “New multi-physics approach for modelling and design of alkaline electrolyzers,” Int. J. Hydrogen Energy, vol. 37, no. 19, pp. 13895–13913, 2012.
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
P. L. Cabot, F. Alcaide, and E. Brillas, “Applications - Stationary | Cogeneration of Energy and Chemicals: Fuel Cells,” Ref. Modul. Chem. Mol. Sci. Chem. Eng., pp. 146–156, 2013. J. Alvarado, “Estudio comparativo de las diferentes tecnologías de celdas de combustible,” Bol. la Soc. Española Cerámica y Vidr., vol. 52, no. 3, pp. 105–117, 2013.
http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
http://purl.org/coar/version/c_970fb48d4fbd8a85
Á. O. Díaz, J. E. González, and O. A. González, “Análisis de un generador de HHO de celda seca para su aplicación en motores de combustión interna,” Rev. UIS Ing., vol. 17, no. 1, pp. 143–154, 2018.
Publication
E. D. Rincón, J. J. García, and J. R. Bermúdez, “ESTADO DEL ARTE DE LAS CELDAS DE COMBUSTIBLE,” Rev. Colomb. Tecnol. Av. Recib., vol. 1, no. 33, pp. 36–49, 2019.
text/html
The electrolyzers work through an electrochemical process, their derivatives (H2,O2 , and HHO) are used as enriching fuels due to the electrolysis of water, being cleaner than gasoline and diesel. This article presents the dynamic model of an alkaline electrolyzer that uses an electrolyte ( KOH o NaHCO3) dissolved in distilled water to accelerate the production of oxyhydrogen (HHO). The model shows the phase change that occurs inside the electrolytic cell. The EES® software was used to determine the values ​​of enthalpy, entropy, and free energy that vary during the electrochemical reaction; the equations were simulated in Matlab-Simulink® to observe their dynamic behavior. The Simulations presented varying every 5 g the electrolyte until reaching 20 g. The flow rate of HHO with potassium hydroxide (20 g) is higher than 0.02 L / s, and with sodium bicarbonate (20 g) it is above 0.0006 L / s, confirming what the literature of alkaline cells state, that the most efficient electrolyte for its energy conversion is KOH.
Alkaline electrolyser
Dynamic model
Simulation
Matlab-Simulink®
EES
Journal article
A. C. Turkmen, S. Solmaz, and C. Celik, “Analysis of fuel cell vehicles with advisor software,” Renew. Sustain. Energy Rev., vol. 70, pp. 1066–1071, 2016.
application/pdf
https://revistas.ufps.edu.co/index.php/respuestas/article/view/1826
Modeling and simulation of an electrolyser for the production of HHO in Matlab- Simulink®
Inglés
https://creativecommons.org/licenses/by-nc-sa/4.0/
Universidad Francisco de Paula Santander - 2020
0122-820X
2422-5053
2019-05-01
https://revistas.ufps.edu.co/index.php/respuestas/article/download/1826/1864
https://revistas.ufps.edu.co/index.php/respuestas/article/download/1826/2202
2019-05-01T00:00:00Z
2019-05-01T00:00:00Z
10.22463/0122820X.1826
6
15
https://doi.org/10.22463/0122820X.1826
institution UNIVERSIDAD FRANCISCO DE PAULA SANTANDER
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADFRANCISCODEPAULASANTANDER/logo.png
country_str Colombia
collection Respuestas
title Modelamiento y simulación de un electrolizador para la producción de HHO en Matlab-Simulink®
spellingShingle Modelamiento y simulación de un electrolizador para la producción de HHO en Matlab-Simulink®
García Pabón, Juan José
Vera Duarte, Luis Emilio
Bermúdez Santaella, José Ricardo
Rincón Castrillo, Erick Daniel
Electrolizador alcalino
Matlab-Simulink®
Simulación
Modelo dinámico
Alkaline electrolyser
Dynamic model
Simulation
Matlab-Simulink®
title_short Modelamiento y simulación de un electrolizador para la producción de HHO en Matlab-Simulink®
title_full Modelamiento y simulación de un electrolizador para la producción de HHO en Matlab-Simulink®
title_fullStr Modelamiento y simulación de un electrolizador para la producción de HHO en Matlab-Simulink®
title_full_unstemmed Modelamiento y simulación de un electrolizador para la producción de HHO en Matlab-Simulink®
title_sort modelamiento y simulación de un electrolizador para la producción de hho en matlab-simulink®
title_eng Modeling and simulation of an electrolyser for the production of HHO in Matlab- Simulink®
description Los electrolizadores funcionan mediante un proceso electroquímico, sus derivados (H2, O2, y HHO) debido a la electrólisis del  agua  son  utilizados  como  combustibles  enriquecedores,  siendo  más  limpios  que  la  gasolina  y  diesel.  Este  artículo  presenta el modelo dinámico de un electrolizador alcalino que utiliza un electrolito (KOH o NaHCO3) disuelto en agua destilada  para  acelerar  la  producción  de  oxihidrógeno  (HHO).  El  modelo  muestra  el  cambio  de  fase  que  ocurre  en  el  interior de la celda electrolítica. Se utilizó el software EES® para determinar los valores de entalpía, entropía, y energía libre que varían durante la reacción electroquímica, las ecuaciones fueron simuladas en Matlab-Simulink® para observar su comportamiento dinámico. Las simulaciones fueron realizadas variando cada 5 g el electrolito hasta llegar a 20 g. El caudal de HHO con hidróxido de potasio (20 g) es superior a 0.02 L/s, y con bicarbonato de sodio (20 g) está por encima de 0.0006 L/s, permitiendo confirmar lo que se enuncia en la literatura de celdas alcalinas, donde se establece que el electrolito más eficiente para su conversión energética es KOH
description_eng The electrolyzers work through an electrochemical process, their derivatives (H2,O2 , and HHO) are used as enriching fuels due to the electrolysis of water, being cleaner than gasoline and diesel. This article presents the dynamic model of an alkaline electrolyzer that uses an electrolyte ( KOH o NaHCO3) dissolved in distilled water to accelerate the production of oxyhydrogen (HHO). The model shows the phase change that occurs inside the electrolytic cell. The EES® software was used to determine the values ​​of enthalpy, entropy, and free energy that vary during the electrochemical reaction; the equations were simulated in Matlab-Simulink® to observe their dynamic behavior. The Simulations presented varying every 5 g the electrolyte until reaching 20 g. The flow rate of HHO with potassium hydroxide (20 g) is higher than 0.02 L / s, and with sodium bicarbonate (20 g) it is above 0.0006 L / s, confirming what the literature of alkaline cells state, that the most efficient electrolyte for its energy conversion is KOH.
author García Pabón, Juan José
Vera Duarte, Luis Emilio
Bermúdez Santaella, José Ricardo
Rincón Castrillo, Erick Daniel
author_facet García Pabón, Juan José
Vera Duarte, Luis Emilio
Bermúdez Santaella, José Ricardo
Rincón Castrillo, Erick Daniel
topicspa_str_mv Electrolizador alcalino
Matlab-Simulink®
Simulación
Modelo dinámico
topic Electrolizador alcalino
Matlab-Simulink®
Simulación
Modelo dinámico
Alkaline electrolyser
Dynamic model
Simulation
Matlab-Simulink®
topic_facet Electrolizador alcalino
Matlab-Simulink®
Simulación
Modelo dinámico
Alkaline electrolyser
Dynamic model
Simulation
Matlab-Simulink®
citationvolume 24
citationissue 2
publisher Universidad Francisco de Paula Santander
ispartofjournal Respuestas
source https://revistas.ufps.edu.co/index.php/respuestas/article/view/1826
language Inglés
format Article
rights http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/4.0/
Universidad Francisco de Paula Santander - 2020
references_eng W. Osorio and Ó. H. Giraldo, “Sobre la termodinámica de las soluciones electrolíticas,” Rev. Fac. Ing. Univ. Antioquia, vol. 40, pp. 7–21, 2007.
R. Battino, “Comments on the teaching of chemistry, doing chemistry demonstrations, and a passion for chemical thermodynamics,” J. Chem. Thermodyn., vol. 123, pp. 74–78, 2018.
M. L. Lladó and A. H. Jubert, “Trabajo útil y su relación con la variación de energía de Gibbs,” Educ. Quim., vol. 22, no. 3, pp. 271–276, 2011.
T. Wilberforce et al., “Modelling and simulation of Proton Exchange Membrane fuel cell with serpentine bipolar plate using MATLAB,” Int. J. Hydrogen Energy, vol. 42, no. 40, pp. 25639–25662, 2017.
M. M. De Souza, R. S. Gomes, and A. L. De Bortoli, “A model for direct ethanol fuel cells considering variations in the concentration of the species,” Int. J. Hydrogen Energy, vol. 43, no. 29, pp. 13475–13488, 2018.
O. Ulleberg, “Modeling of advanced alkaline electrolyzers: a system simulation approach,” Int. J. Hydrogen Energy, vol. 28, pp. 21–33, 2003.
A. Ursúa and P. Sanchis, “Static-dynamic modelling of the electrical behaviour of a commercial advanced alkaline water electrolyser,” Int. J. Hydrogen Energy, vol. 37, no. 24, pp. 18598–18614, 2012.
M. Sánchez, E. Amores, L. Rodríguez, and C. Clemente-Jul, “Modelado y simulación de sistemas de producción de hidrógeno vía electrolisis alcalina a partir de energías renovables,” in Congreso Iberoamericano de Hidrógeno y Pilas de Combustible 2017, 2017, pp. 183–186.
G. Yan et al., “An Arrhenius equation-based model to predict the residual stress relief of post weld heat treatment of Ti-6Al-4V plate,” J. Manuf. Process., vol. 32, pp. 763–772, 2018.
K. Naveršnik and R. Jurečič, “Humidity-corrected Arrhenius equation: The reference condition approach,” Int. J. Pharm., vol. 500, no. 1–2, pp. 360–365, 2016.
D. Michel, “Test of the formal basis of Arrhenius law with heat capacities,” Phys. A Stat. Mech. its Appl., vol. 510, pp. 188–199, 2018.
M. Hammoudi, C. Henao, K. Agbossou, Y. Dubé, and M. L. Doumbia, “New multi-physics approach for modelling and design of alkaline electrolyzers,” Int. J. Hydrogen Energy, vol. 37, no. 19, pp. 13895–13913, 2012.
P. L. Cabot, F. Alcaide, and E. Brillas, “Applications - Stationary | Cogeneration of Energy and Chemicals: Fuel Cells,” Ref. Modul. Chem. Mol. Sci. Chem. Eng., pp. 146–156, 2013. J. Alvarado, “Estudio comparativo de las diferentes tecnologías de celdas de combustible,” Bol. la Soc. Española Cerámica y Vidr., vol. 52, no. 3, pp. 105–117, 2013.
Á. O. Díaz, J. E. González, and O. A. González, “Análisis de un generador de HHO de celda seca para su aplicación en motores de combustión interna,” Rev. UIS Ing., vol. 17, no. 1, pp. 143–154, 2018.
E. D. Rincón, J. J. García, and J. R. Bermúdez, “ESTADO DEL ARTE DE LAS CELDAS DE COMBUSTIBLE,” Rev. Colomb. Tecnol. Av. Recib., vol. 1, no. 33, pp. 36–49, 2019.
A. C. Turkmen, S. Solmaz, and C. Celik, “Analysis of fuel cell vehicles with advisor software,” Renew. Sustain. Energy Rev., vol. 70, pp. 1066–1071, 2016.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2019-05-01
date_accessioned 2019-05-01T00:00:00Z
date_available 2019-05-01T00:00:00Z
url https://revistas.ufps.edu.co/index.php/respuestas/article/view/1826
url_doi https://doi.org/10.22463/0122820X.1826
issn 0122-820X
eissn 2422-5053
doi 10.22463/0122820X.1826
citationstartpage 6
citationendpage 15
url2_str_mv https://revistas.ufps.edu.co/index.php/respuestas/article/download/1826/1864
url3_str_mv https://revistas.ufps.edu.co/index.php/respuestas/article/download/1826/2202
_version_ 1797194868469006336