Hongos micorrizógenos arbusculares asociados a plantas de Zea Mays L. en un agroecosistema del Atlántico, Colombia.

El maíz es considerado uno de los más importantes cultivos a nivel mundial. Como en muchos otros países, Colombia ha utilizado este cereal no solo como alimento para humanos y animales sino también para fabricar diferentes productos industriales. Las plantas de maíz están bien adaptadas a las diferentes condiciones climáticas y agroecológicas de Colombia, lo cual le permite estar ampliamente distribuido en todo el país. Algunas de sus adaptaciones naturales son atribuidas a la existencia de relaciones simbióticas con hongos micorrizógenos arbusculares (HMA), los cuales promueven la captación de nutrientes en especial de aquellos que tienen escasa movilidad tales como el fósforo (P) y el nitrógeno (N). Se identificaron HMA asociados a cultiv... Ver más

Guardado en:

23

2015-01-01

20

34

http://purl.org/coar/access_right/c_abf2

info:eu-repo/semantics/openAccess

Carina P. Rodríguez López - 2015

id 2ae089fa54decca73376cf70b7d78c73
record_format ojs
spelling Hongos micorrizógenos arbusculares asociados a plantas de Zea Mays L. en un agroecosistema del Atlántico, Colombia.
Merryweather, J. & Fitter, A. 1998. The arbuscular mycorrhizal fungi of Hyacinthoides non - scripta II . Seasonal and spatial patterns of fungal populations. New Phytol. 138: 131-142.
Phillips, J.M. & Hayman, D.S. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc. 55: 158-161.
Pérez, A. & Vertel, M. 2010. Evaluación de la colonización de micorrizas arbusculares en pasto Bothriochloa pertusa (L) A. Camus. Rev MVZ Córdoba. 15: 2165-2174.
Peña-Venegas, C.P., Cardona, G.I., Arguelles, J.H. & Arcos, A.L. 2007. Micorrizas arbusculares del Sur de la Amazonia colombiana y su relación con algunos factores fisicoquímicos y biológicos del suelo. Inst Amaz Investig Científicas Sinchi. 37 (3): 327-326.
Pande, M. & Tarafdarm, J.C. 2004. Arbuscular mycorrhizal fungal diversity in neem-based agroforestry systems in Rajasthan. Appl Soil Ecol. 26: 233-241.
Nascimento de Oliveira, A. & de Oliveira, L. 2005. Seasonal dynamics of arbuscular mycorrhizal fungi in plants of Theobroma grandiflorum Schum and Paullinia cupana Mart. of an agroforestry system in central Amazonia, Amazonas State, Brazil. Brazilian J Microbiol. 36: 262-270.
Nair, M.G., Safir, G.R. & Siqueira, J. 1991. Isolation and Identification of Vesicular-Arbuscular Mycorrhiza- Stimulatory Compounds from Clover (Trifolium repens) Roots. Appl Environ Microbiol. 57: 434-439.
Muleta, D., Assefa, F., Nemomissa, S. & Granhall, U. 2008. Distribution of arbuscular mycorrhizal fungi spores in soils of smallholder agroforestry and monocultural coffee systems in southwestern Ethiopia. Biol Fertil Soils. 44: 653-659.
Moreira-Souza, M., Trufem, S.F.B., Gomes-da-Costa, S.M. & Cardoso, E.J.B.N. 2003. Arbuscular mycorrhizal fungi associated with Araucaria angustifolia (Bert.) O. Ktze. Mycorrhiza. 13: 211-215.
Montaño Arias, N.M., Quiroz García, V. & Cruz-Flores, G. 2001. Colonización micorrizica arbuscular y fertilización mineral de genotipos de maíz y trigo cultivados en un andisol. TERRA. 19: 337-344.
Miller, D.D., Domoto, P.A. & Walker, C. 1985. Mycorrhizal fungi at eighteen apple rootstock plantings in the United States. New Phytol. 100: 379-391.
Martín, G. et al. 2009. Efecto de la canavalia ensiformis y micorrizas arbusculares en el cultivo del maíz. Rev Cuba Cienc Agrícola. 43: 191-199.
Pringle, A. & Bever, J.D. 2002. Divergent phenologies may facilitate the coexistence of arbuscular mycorrhizal fungi in a North Carolina grassland. Am J Bot. 89: 1439-1446.
Lovera, M. & Cuenca, G. 2007. Diversidad de hongos micorrízicos arbusculares (HMA) y potencial micorrízico del suelo de una sabana natural y una sabana perturbada de la gran sabana, Venezuela. Interciencia. 32: 108-114.
Lovelock, C.E., Andersen, K. & Morton, J.B. 2003. Arbuscular mycorrhizal communities in tropical forests are affected by host tree species and environment. Oecologia. 135: 268-279.
Khade, S.W. & Rodrigues, B.F. 2006. Arbuscular mycorrhizal fungi associated with varieties of Carica papaya L. IN tropical agro-based ecosystem of Goa, India. Trop Subtrop Agroecosystems. 1: 117-122.
Kato Yamakake, T.Á., Mapes Sánchez, C., Mera Ovando, L.M., Serratos Hernández, J.A. & Bye Boettler, R.A. 2009. Origen y diversificación del maíz: una revisión analítica. Universidad Nacional Autónoma de México, Ciudad de México.
Kalinhoff, C., Cáceres, A. & Lugo, L. 2009. Cambios en la biomasa de raíces y micorrizas arbusculares en cultivos itinerantes del Amazonas venezolano. Interciencia. 34: 571-576.
Jenkins, W.R. 1964. A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Dis Report. 48: 692.
Holdridge, L.R. 1967. Life zone ecology. Tropical Science Center, San José de Costa Rica.
Ho, I. 1987. Vesicular-Arbuscular Mycorrhizae of Halophytic Grasses in the Alvord Desert of Oregon. Northwest Sci. 61: 148-151.
Halffter, G. (comp.). 1992. La diversidad biológica de Iberoamérica I. Instituto de Ecología, A.C., Xalapa.
Guerrero Forero, E. & Azcon, C. 1996. Micorrizas: recurso biológico del suelo. Fondo FEN, Bogotá.
Picone, C. 2006. Diversity and abundance of Arbuscular-Mycorrhizal Fungus Spores in Tropical Forest and Pasture. Biotropica. 32: 734-750.
Romero Martins, C., Claessen, J.C., Miranda, D. & Nobre, L. 1999. Contribution of native arbuscular mycorrhizal fungi in the stablishment of Aristida setifolia Kunth in degraded areas in the Cerrado. Pesq Agropec Bras. 34: 665-674.
Franke-Snyder, M. et al. 2001. Diversity of communities of arbuscular mycorrhizal (AM) fungi present in conventional versus low-input agricultural sites in eastern Pennsylvania, USA. Appl Soil Ecol. 16: 35-48.
Vargas, R., Hasselquist, N., Allen, E.B. & Allen, M.F. 2010. Effects of a Hurricane disturbance on Aboveground Forest Structure, Arbuscular Mycorrhizae and Belowground Carbon in a Restored Tropical Forest. Ecosystems. 13: 118-128.
Text
http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:eu-repo/semantics/article
Wang, Y.Y. et al. 2008. Diversity and infectivity of arbuscular mycorrhizal fungi in agricultural soils of the Sichuan Province of mainland China. Mycorrhiza. 18: 59-68.
Vierheilig, H., Coughlan, A.P., Wyss, U. & Piché, Y. 1998. Ink and Vinegar, a Simple Staining Technique for ArbuscularMycorrhizal Fungi. Appl Environ Microbiol. 64: 5004-5007.
Venegas, H. 2010. El cultivo del maíz, historia e importancia. El Cereal. 93: 1-19.
Tapia-Goné, J. et al. 2008. Caracterización e identificación morfológica de hongos formadores de micorriza arbuscular, en cinco suelos salinos del Estado de San Luis Potosí, México. Mex Micol. 26: 1-7.
Roveda, G. & Polo, C. 2010. Mecanismos de adaptación de maíz asociado a Glomus spp. en suelos con bajo fósforo disponible. Agron Colomb. 25: 349-356.
Silva Castro, C.A. 2005. Maiz geneticamente modificado. AGRO-BIO, Bogotá.
Sieverding, E. 1983. Manual de métodos para la investigación de la micorriza vesículo-arbuscular en el laboratorio, Centro Internacional de Agricultura Tropical (CIAT), Proyecto Micorriza.
Sharif, M., Rubina, K. & Burni, T. 2010. Occurrence and distribution of arbuscular mycorrhizal fungi in wheat and maize crops of Malakand division of North West frontier province. Pak J Bot. 42: 1301-1312.
Serralde, O.A.M. & Ramírez, G.M.M. 2004. Análisis de poblaciones de micorrizas en maíz (Zea mays) cultivado en suelos ácidos bajo diferentes tratamientos agronómicos. Rev Corpoica. 5: 31-40.
Schenck, N.C. & Smith, G.S. 1982. Responses of six species of vesicular-arbuscular mycorrhizal fungi and their effects on soybean at four soil temperatures. New Phytol. 92: 193-201.
Schenck, N.C., Graham, S.O. & Green, N.E. 1975. Temperature and light effect on contamination and spore germination of vesicular-arbuscular mycorrhizal fungi. Mycologia. 67: 1189-1192.
Schenck, N.C. & Pérez, Y. 1990. Manual for the identification of VA mycorrhizal fungi. Synergistic Publications, Gainesville.
Sangabriel-Conde, W., Trejo-Aguilar, D., Soto-Estrada, A., Ferrera-Cerrato, R. & Lara-Capistrán, L. 2010. Potencial de colonización de hongos micorrícico-arbusculares en suelos cultivados con papayo bajo diferentes manejos de producción. Rev Mex Micol. 31: 45-52.
Sánchez de Prager, M. 1999. Endomicorrizas en agroecosistemas colombianos. Universidad Nacional de Colombia sede Palmira, Palmira.
Ryan, P.D., Hammer, Ø., Harper, D.A. & Ryan, D.D. 2001. PAST: Paleontological statistics software packege for education and data analysis. Palaeontol Electron. 4: 1-7.
Guadarrama-Chávez, P., Camargo-Ricalde, S.L., Hernández-Cuevas, L. & Castillo-Argüero, S. 2007. Los hongos micorrizogenos arbusculares de la región de Nizandia, Oaxaca, México. Boletín de la Sociedad Botánica de México. 81: 131-137.
Entry, J.A., Rygiewicz, P.T., Watrud, L.S. & Donnelly, P.K. 2002. Influence of adverse soil conditions on the formation and function of Arbuscular mycorrhizas. Adv Environ Res. 7: 123-138.
Publication
simbiosis
Agronomía
Davies, F.T., Calderón, C.M., Huaman, Z. & Gómez, R. 2005. Influence of a flavonoid (formononetin) on mycorrhizal activity and potato crop productivity in the highlands of Peru Sci Hortic. 106: 318-329.
application/pdf
Artículo de revista
Núm. 1 , Año 2015 : Enero - Junio
1
23
características edáficas
Español
hongos
cultivo de maíz
Valle Molinares, Roger H.
Valencia Jimenez, Arnubio
Arboleda Valencia, Jorge W.
Navarro de León, Alexis
Rodríguez López, Carina P.
El maíz es considerado uno de los más importantes cultivos a nivel mundial. Como en muchos otros países, Colombia ha utilizado este cereal no solo como alimento para humanos y animales sino también para fabricar diferentes productos industriales. Las plantas de maíz están bien adaptadas a las diferentes condiciones climáticas y agroecológicas de Colombia, lo cual le permite estar ampliamente distribuido en todo el país. Algunas de sus adaptaciones naturales son atribuidas a la existencia de relaciones simbióticas con hongos micorrizógenos arbusculares (HMA), los cuales promueven la captación de nutrientes en especial de aquellos que tienen escasa movilidad tales como el fósforo (P) y el nitrógeno (N). Se identificaron HMA asociados a cultivos de maíz localizados en el municipio de Sabanalarga, Atlántico, Colombia. El número de esporas en 100 g de suelo se determinó mediante tamizado, siguiendo protocolos de centrifugación en sacarosa. El número de esporas por 100 g de suelo mostró diferencias estadísticas significativas durante los meses de muestreo (p<0,05). Se identificaron un total de 19 morfotipos correspondientes a doce especies del género Glomus, cinco del género Gigaspora y una especie para los géneros Acaulospora y Scutellospora. Se encontró correlación negativa entre temperatura y número de esporas; sin embargo no existió correlación entre el pH y las variables densidad de esporas, porcentaje de colonización y temperatura del suelo. Asimismo, se reportó bajo contenido de materia orgánica (0,99 %) y baja capacidad de intercambio catiónico (7,50 cmol.kgr-1suelo). Estos resultados, sumados al hecho de que este tipo de cultivos son grandemente dependientes de la actividad de hongos micorrizógenos, explican la densidad de esporas (400-1350 esp/100 g) y el elevado porcentaje de colonización (40-98 %) que fue encontrado durante el muestreo. Es claro que este cereal depende de la presencia de hongos micorrizógenos durante la toma de nutrientes.
https://revistasojs.ucaldas.edu.co/index.php/agronomia/article/view/18
Agronomía
https://creativecommons.org/licenses/by-nc-sa/4.0/
Camargo-Ricalde, S.L. 2002. Dispersal, distribution and establishment of arbuscular mycorrhizal fungi: A review. Boletín de la Sociedad Botánica de México. 71: 33-44.
Bi Iritié, Z. et al. 2012. Arbuscular mycorrizal fungi associated with Theobroma cacao L. in the region of Yamoussoukro (Cote d’Ivoire). African J Agric Res. 7: 993-1001.
Carina P. Rodríguez López - 2015
Borde, M., Dudhane, M. & Kaur, J.P. 2010. Diversity of AM fungi in some tree species from dry land area of central Maharashtra (India). Arch Phytopathol Plant Prot. 43: 1796-1808.
Bashan, Y. et al. 2007. Mycorrhizal characterization of the boojum tree, Fouquieria columnaris, an endemic ancient tree from the Baja California Peninsula, Mexico. Trees Struct Funct. 21: 329-335.
Arias, R.M., Heredia-Abarca, G., Sosa, V.J. & Fuentes-Ramírez, L.E. 2012. Diversity and abundance of arbuscular mycorrhizal fungi spores under different coffee production systems and in a tropical montane cloud forest patch in Veracruz, Mexico. Agrofor Syst. 85: 179-193.
Alvarado, G. 2010. Diversidad de maíces nativos de tres nichos ecológicos del altiplano poblano-tlaxclalteca. Instituto de Enseñanza e Investigación en Ciencias Agrícolas, México.
Alvarado, A., Chavarría, M., Guerrero, R., Boniche, J. & Navarro, J. 2004. Características edáficas y presencia de micorrizas. Agron Costarric. 28: 89-100.
Camargo-Ricalde, S.L. & Esperón-Rodríguez, M. 2005. Efecto de la heterogeneidad espacial y estacional del suelo sobre la abundancia de esporas de hongos micorrizógenos arbusculares en el valle semiárido de Tehuacán-Cuicatlán, México. Rev Biol Trop. 53: 339-352.
Becerra, A.G., Nouhra, E.R., Silva, M.P. & McKay, D. 2009. Ectomycorrhizae, arbuscular mycorrhizae, and dark-septate fungi on Salix humboldtiana in two riparian populations from central Argentina. Mycoscience. 50: 343-352.
Cardona, G., Peña-Venegas, P. & Arcos, A. 2008. Ocurrencia de hongos formadores de micorriza arbuscular asociados a ají (Capsicum sp.) en la Amazonia colombiana. Agron Colomb. 26: 459-470.
Colozzi Filho, A. & Cardoso Nogueira, E.J.B. 2000. Detecção de fungos micorrízicos arbusculares em raízes de Cafeeiro e de Crotalária cultivada na entrelinha. Pesq Agropec Bras. 35: 2033-2042.
Alarcón, A. & Ferrera-Cerrato, R. 1999. Manejo de la micorriza arbuscular en sistemas de propagación de plantas fruticolas. TERRA. 17: 179-191.
Aguilar-Fernández, M., Jaramillo, V.J., Varela-Fregoso, L. & Gavito, M.E. 2009. Short-term consequences of slash-and-burn practices on the arbuscular mycorrhizal fungi of a tropical dry forest. Mycorrhiza. 19: 179-186.
Cuadros, G.A., Gómez, S.R. & Rodríguez, L.N.F. 2011. Asociación simbiótica entre hongos micorrízicos arbusculares y el sistema radicular de plántulas de cacao (Theobroma cacao L.): efecto de la formononetina y la disponibilidad de fósforo en el suelo. Corpoica Cienc y Tecnol Agorpecuaria. 12: 77-85.
Cuervo, A.J.L. & Rivas, P.G.G. 2007. Cuantificación de hongos micorrícicos en muestras de suelo en plantaciones de Tabebuia rosea y Cordia alliodora. NOVA. 5: 1794-24701.
Bhardwaj, S., Dudeja, S.S. & Khurana, A.L. 1997. Distribution of vesicular-arbuscular mycorrhizal fungi in the natural ecosystem. Folia Microbiol. 42: 589-594.
Corn is considered one of the most important cereal crops worldwide. As many other countries, Colombia has used this cereal not only to feed humans and animals but also to manufacture many different industrial products. Corn plants are well adapted in different climatic and ecological conditions in Colombia which allows it to be widely distributed throughout the country. Some of its natural adaptations are attributed to the existence of symbiotic relationships with Arbuscular Mycorrhizal fungi (AMF) which promote the nutrient uptake, especially those with known low mobility such as phosphorus (P) and nitrogen (N). AMFs associated to corn crops were identified in samples collected in the fields of the municipality of Sabanalarga (Atlántico, Colombia). The number of spores per 100 g of soil was determined by sieving following sucrose centrifugation standard protocols. The number of spores per 100 g of soil showed statistically significant differences during the months of sampling (p < 0.05). A total of 19 morphotypes, corresponding to twelve species of the genus Glomus, five of the genus Gigaspora, and one species of both genus Acaulospora and Scutellospora were identified. A negative correlation between temperature and number of spores was found but no correlation between pH and the spore density, percentage of colonization and soil temperature variables was found. Additionally, low organic matter content (0.99%) and low cation exchange capacity (7.50 cmol*soil-Kg-1) were reported. These results, in addition to the fact that this kind of crops are highly dependent of mycorrhizal fungi activity, explain the spore density (400-1350 spore/ 100 g) and the high percentage of colonization (40-98%) that were obtained during sampling. It is clear that this cereal crop depends on the presence of mycorrhizal fungi during nutrient uptake.
soil characteristics
corn crop
fungi
symbiosis
Journal article
Arbuscular mycorrhizal fungi associated to Zea Mays L. plants in an agroecosystem of Atlántico, Colombia.
https://revistasojs.ucaldas.edu.co/index.php/agronomia/article/download/18/7
2015-01-01T00:00:00Z
2015-01-01T00:00:00Z
2015-01-01
34
20
https://revistasojs.ucaldas.edu.co/index.php/agronomia/article/view/18
institution UNIVERSIDAD DE CALDAS
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDECALDAS/logo.png
country_str Colombia
collection Agronomía
title Hongos micorrizógenos arbusculares asociados a plantas de Zea Mays L. en un agroecosistema del Atlántico, Colombia.
spellingShingle Hongos micorrizógenos arbusculares asociados a plantas de Zea Mays L. en un agroecosistema del Atlántico, Colombia.
Valle Molinares, Roger H.
Valencia Jimenez, Arnubio
Arboleda Valencia, Jorge W.
Navarro de León, Alexis
Rodríguez López, Carina P.
simbiosis
características edáficas
hongos
cultivo de maíz
soil characteristics
corn crop
fungi
symbiosis
title_short Hongos micorrizógenos arbusculares asociados a plantas de Zea Mays L. en un agroecosistema del Atlántico, Colombia.
title_full Hongos micorrizógenos arbusculares asociados a plantas de Zea Mays L. en un agroecosistema del Atlántico, Colombia.
title_fullStr Hongos micorrizógenos arbusculares asociados a plantas de Zea Mays L. en un agroecosistema del Atlántico, Colombia.
title_full_unstemmed Hongos micorrizógenos arbusculares asociados a plantas de Zea Mays L. en un agroecosistema del Atlántico, Colombia.
title_sort hongos micorrizógenos arbusculares asociados a plantas de zea mays l. en un agroecosistema del atlántico, colombia.
title_eng Arbuscular mycorrhizal fungi associated to Zea Mays L. plants in an agroecosystem of Atlántico, Colombia.
description El maíz es considerado uno de los más importantes cultivos a nivel mundial. Como en muchos otros países, Colombia ha utilizado este cereal no solo como alimento para humanos y animales sino también para fabricar diferentes productos industriales. Las plantas de maíz están bien adaptadas a las diferentes condiciones climáticas y agroecológicas de Colombia, lo cual le permite estar ampliamente distribuido en todo el país. Algunas de sus adaptaciones naturales son atribuidas a la existencia de relaciones simbióticas con hongos micorrizógenos arbusculares (HMA), los cuales promueven la captación de nutrientes en especial de aquellos que tienen escasa movilidad tales como el fósforo (P) y el nitrógeno (N). Se identificaron HMA asociados a cultivos de maíz localizados en el municipio de Sabanalarga, Atlántico, Colombia. El número de esporas en 100 g de suelo se determinó mediante tamizado, siguiendo protocolos de centrifugación en sacarosa. El número de esporas por 100 g de suelo mostró diferencias estadísticas significativas durante los meses de muestreo (p<0,05). Se identificaron un total de 19 morfotipos correspondientes a doce especies del género Glomus, cinco del género Gigaspora y una especie para los géneros Acaulospora y Scutellospora. Se encontró correlación negativa entre temperatura y número de esporas; sin embargo no existió correlación entre el pH y las variables densidad de esporas, porcentaje de colonización y temperatura del suelo. Asimismo, se reportó bajo contenido de materia orgánica (0,99 %) y baja capacidad de intercambio catiónico (7,50 cmol.kgr-1suelo). Estos resultados, sumados al hecho de que este tipo de cultivos son grandemente dependientes de la actividad de hongos micorrizógenos, explican la densidad de esporas (400-1350 esp/100 g) y el elevado porcentaje de colonización (40-98 %) que fue encontrado durante el muestreo. Es claro que este cereal depende de la presencia de hongos micorrizógenos durante la toma de nutrientes.
description_eng Corn is considered one of the most important cereal crops worldwide. As many other countries, Colombia has used this cereal not only to feed humans and animals but also to manufacture many different industrial products. Corn plants are well adapted in different climatic and ecological conditions in Colombia which allows it to be widely distributed throughout the country. Some of its natural adaptations are attributed to the existence of symbiotic relationships with Arbuscular Mycorrhizal fungi (AMF) which promote the nutrient uptake, especially those with known low mobility such as phosphorus (P) and nitrogen (N). AMFs associated to corn crops were identified in samples collected in the fields of the municipality of Sabanalarga (Atlántico, Colombia). The number of spores per 100 g of soil was determined by sieving following sucrose centrifugation standard protocols. The number of spores per 100 g of soil showed statistically significant differences during the months of sampling (p < 0.05). A total of 19 morphotypes, corresponding to twelve species of the genus Glomus, five of the genus Gigaspora, and one species of both genus Acaulospora and Scutellospora were identified. A negative correlation between temperature and number of spores was found but no correlation between pH and the spore density, percentage of colonization and soil temperature variables was found. Additionally, low organic matter content (0.99%) and low cation exchange capacity (7.50 cmol*soil-Kg-1) were reported. These results, in addition to the fact that this kind of crops are highly dependent of mycorrhizal fungi activity, explain the spore density (400-1350 spore/ 100 g) and the high percentage of colonization (40-98%) that were obtained during sampling. It is clear that this cereal crop depends on the presence of mycorrhizal fungi during nutrient uptake.
author Valle Molinares, Roger H.
Valencia Jimenez, Arnubio
Arboleda Valencia, Jorge W.
Navarro de León, Alexis
Rodríguez López, Carina P.
author_facet Valle Molinares, Roger H.
Valencia Jimenez, Arnubio
Arboleda Valencia, Jorge W.
Navarro de León, Alexis
Rodríguez López, Carina P.
topicspa_str_mv simbiosis
características edáficas
hongos
cultivo de maíz
topic simbiosis
características edáficas
hongos
cultivo de maíz
soil characteristics
corn crop
fungi
symbiosis
topic_facet simbiosis
características edáficas
hongos
cultivo de maíz
soil characteristics
corn crop
fungi
symbiosis
citationvolume 23
citationissue 1
citationedition Núm. 1 , Año 2015 : Enero - Junio
publisher Agronomía
ispartofjournal Agronomía
source https://revistasojs.ucaldas.edu.co/index.php/agronomia/article/view/18
language Español
format Article
rights http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/4.0/
Carina P. Rodríguez López - 2015
references Merryweather, J. & Fitter, A. 1998. The arbuscular mycorrhizal fungi of Hyacinthoides non - scripta II . Seasonal and spatial patterns of fungal populations. New Phytol. 138: 131-142.
Phillips, J.M. & Hayman, D.S. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc. 55: 158-161.
Pérez, A. & Vertel, M. 2010. Evaluación de la colonización de micorrizas arbusculares en pasto Bothriochloa pertusa (L) A. Camus. Rev MVZ Córdoba. 15: 2165-2174.
Peña-Venegas, C.P., Cardona, G.I., Arguelles, J.H. & Arcos, A.L. 2007. Micorrizas arbusculares del Sur de la Amazonia colombiana y su relación con algunos factores fisicoquímicos y biológicos del suelo. Inst Amaz Investig Científicas Sinchi. 37 (3): 327-326.
Pande, M. & Tarafdarm, J.C. 2004. Arbuscular mycorrhizal fungal diversity in neem-based agroforestry systems in Rajasthan. Appl Soil Ecol. 26: 233-241.
Nascimento de Oliveira, A. & de Oliveira, L. 2005. Seasonal dynamics of arbuscular mycorrhizal fungi in plants of Theobroma grandiflorum Schum and Paullinia cupana Mart. of an agroforestry system in central Amazonia, Amazonas State, Brazil. Brazilian J Microbiol. 36: 262-270.
Nair, M.G., Safir, G.R. & Siqueira, J. 1991. Isolation and Identification of Vesicular-Arbuscular Mycorrhiza- Stimulatory Compounds from Clover (Trifolium repens) Roots. Appl Environ Microbiol. 57: 434-439.
Muleta, D., Assefa, F., Nemomissa, S. & Granhall, U. 2008. Distribution of arbuscular mycorrhizal fungi spores in soils of smallholder agroforestry and monocultural coffee systems in southwestern Ethiopia. Biol Fertil Soils. 44: 653-659.
Moreira-Souza, M., Trufem, S.F.B., Gomes-da-Costa, S.M. & Cardoso, E.J.B.N. 2003. Arbuscular mycorrhizal fungi associated with Araucaria angustifolia (Bert.) O. Ktze. Mycorrhiza. 13: 211-215.
Montaño Arias, N.M., Quiroz García, V. & Cruz-Flores, G. 2001. Colonización micorrizica arbuscular y fertilización mineral de genotipos de maíz y trigo cultivados en un andisol. TERRA. 19: 337-344.
Miller, D.D., Domoto, P.A. & Walker, C. 1985. Mycorrhizal fungi at eighteen apple rootstock plantings in the United States. New Phytol. 100: 379-391.
Martín, G. et al. 2009. Efecto de la canavalia ensiformis y micorrizas arbusculares en el cultivo del maíz. Rev Cuba Cienc Agrícola. 43: 191-199.
Pringle, A. & Bever, J.D. 2002. Divergent phenologies may facilitate the coexistence of arbuscular mycorrhizal fungi in a North Carolina grassland. Am J Bot. 89: 1439-1446.
Lovera, M. & Cuenca, G. 2007. Diversidad de hongos micorrízicos arbusculares (HMA) y potencial micorrízico del suelo de una sabana natural y una sabana perturbada de la gran sabana, Venezuela. Interciencia. 32: 108-114.
Lovelock, C.E., Andersen, K. & Morton, J.B. 2003. Arbuscular mycorrhizal communities in tropical forests are affected by host tree species and environment. Oecologia. 135: 268-279.
Khade, S.W. & Rodrigues, B.F. 2006. Arbuscular mycorrhizal fungi associated with varieties of Carica papaya L. IN tropical agro-based ecosystem of Goa, India. Trop Subtrop Agroecosystems. 1: 117-122.
Kato Yamakake, T.Á., Mapes Sánchez, C., Mera Ovando, L.M., Serratos Hernández, J.A. & Bye Boettler, R.A. 2009. Origen y diversificación del maíz: una revisión analítica. Universidad Nacional Autónoma de México, Ciudad de México.
Kalinhoff, C., Cáceres, A. & Lugo, L. 2009. Cambios en la biomasa de raíces y micorrizas arbusculares en cultivos itinerantes del Amazonas venezolano. Interciencia. 34: 571-576.
Jenkins, W.R. 1964. A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Dis Report. 48: 692.
Holdridge, L.R. 1967. Life zone ecology. Tropical Science Center, San José de Costa Rica.
Ho, I. 1987. Vesicular-Arbuscular Mycorrhizae of Halophytic Grasses in the Alvord Desert of Oregon. Northwest Sci. 61: 148-151.
Halffter, G. (comp.). 1992. La diversidad biológica de Iberoamérica I. Instituto de Ecología, A.C., Xalapa.
Guerrero Forero, E. & Azcon, C. 1996. Micorrizas: recurso biológico del suelo. Fondo FEN, Bogotá.
Picone, C. 2006. Diversity and abundance of Arbuscular-Mycorrhizal Fungus Spores in Tropical Forest and Pasture. Biotropica. 32: 734-750.
Romero Martins, C., Claessen, J.C., Miranda, D. & Nobre, L. 1999. Contribution of native arbuscular mycorrhizal fungi in the stablishment of Aristida setifolia Kunth in degraded areas in the Cerrado. Pesq Agropec Bras. 34: 665-674.
Franke-Snyder, M. et al. 2001. Diversity of communities of arbuscular mycorrhizal (AM) fungi present in conventional versus low-input agricultural sites in eastern Pennsylvania, USA. Appl Soil Ecol. 16: 35-48.
Vargas, R., Hasselquist, N., Allen, E.B. & Allen, M.F. 2010. Effects of a Hurricane disturbance on Aboveground Forest Structure, Arbuscular Mycorrhizae and Belowground Carbon in a Restored Tropical Forest. Ecosystems. 13: 118-128.
Wang, Y.Y. et al. 2008. Diversity and infectivity of arbuscular mycorrhizal fungi in agricultural soils of the Sichuan Province of mainland China. Mycorrhiza. 18: 59-68.
Vierheilig, H., Coughlan, A.P., Wyss, U. & Piché, Y. 1998. Ink and Vinegar, a Simple Staining Technique for ArbuscularMycorrhizal Fungi. Appl Environ Microbiol. 64: 5004-5007.
Venegas, H. 2010. El cultivo del maíz, historia e importancia. El Cereal. 93: 1-19.
Tapia-Goné, J. et al. 2008. Caracterización e identificación morfológica de hongos formadores de micorriza arbuscular, en cinco suelos salinos del Estado de San Luis Potosí, México. Mex Micol. 26: 1-7.
Roveda, G. & Polo, C. 2010. Mecanismos de adaptación de maíz asociado a Glomus spp. en suelos con bajo fósforo disponible. Agron Colomb. 25: 349-356.
Silva Castro, C.A. 2005. Maiz geneticamente modificado. AGRO-BIO, Bogotá.
Sieverding, E. 1983. Manual de métodos para la investigación de la micorriza vesículo-arbuscular en el laboratorio, Centro Internacional de Agricultura Tropical (CIAT), Proyecto Micorriza.
Sharif, M., Rubina, K. & Burni, T. 2010. Occurrence and distribution of arbuscular mycorrhizal fungi in wheat and maize crops of Malakand division of North West frontier province. Pak J Bot. 42: 1301-1312.
Serralde, O.A.M. & Ramírez, G.M.M. 2004. Análisis de poblaciones de micorrizas en maíz (Zea mays) cultivado en suelos ácidos bajo diferentes tratamientos agronómicos. Rev Corpoica. 5: 31-40.
Schenck, N.C. & Smith, G.S. 1982. Responses of six species of vesicular-arbuscular mycorrhizal fungi and their effects on soybean at four soil temperatures. New Phytol. 92: 193-201.
Schenck, N.C., Graham, S.O. & Green, N.E. 1975. Temperature and light effect on contamination and spore germination of vesicular-arbuscular mycorrhizal fungi. Mycologia. 67: 1189-1192.
Schenck, N.C. & Pérez, Y. 1990. Manual for the identification of VA mycorrhizal fungi. Synergistic Publications, Gainesville.
Sangabriel-Conde, W., Trejo-Aguilar, D., Soto-Estrada, A., Ferrera-Cerrato, R. & Lara-Capistrán, L. 2010. Potencial de colonización de hongos micorrícico-arbusculares en suelos cultivados con papayo bajo diferentes manejos de producción. Rev Mex Micol. 31: 45-52.
Sánchez de Prager, M. 1999. Endomicorrizas en agroecosistemas colombianos. Universidad Nacional de Colombia sede Palmira, Palmira.
Ryan, P.D., Hammer, Ø., Harper, D.A. & Ryan, D.D. 2001. PAST: Paleontological statistics software packege for education and data analysis. Palaeontol Electron. 4: 1-7.
Guadarrama-Chávez, P., Camargo-Ricalde, S.L., Hernández-Cuevas, L. & Castillo-Argüero, S. 2007. Los hongos micorrizogenos arbusculares de la región de Nizandia, Oaxaca, México. Boletín de la Sociedad Botánica de México. 81: 131-137.
Entry, J.A., Rygiewicz, P.T., Watrud, L.S. & Donnelly, P.K. 2002. Influence of adverse soil conditions on the formation and function of Arbuscular mycorrhizas. Adv Environ Res. 7: 123-138.
Davies, F.T., Calderón, C.M., Huaman, Z. & Gómez, R. 2005. Influence of a flavonoid (formononetin) on mycorrhizal activity and potato crop productivity in the highlands of Peru Sci Hortic. 106: 318-329.
Camargo-Ricalde, S.L. 2002. Dispersal, distribution and establishment of arbuscular mycorrhizal fungi: A review. Boletín de la Sociedad Botánica de México. 71: 33-44.
Bi Iritié, Z. et al. 2012. Arbuscular mycorrizal fungi associated with Theobroma cacao L. in the region of Yamoussoukro (Cote d’Ivoire). African J Agric Res. 7: 993-1001.
Borde, M., Dudhane, M. & Kaur, J.P. 2010. Diversity of AM fungi in some tree species from dry land area of central Maharashtra (India). Arch Phytopathol Plant Prot. 43: 1796-1808.
Bashan, Y. et al. 2007. Mycorrhizal characterization of the boojum tree, Fouquieria columnaris, an endemic ancient tree from the Baja California Peninsula, Mexico. Trees Struct Funct. 21: 329-335.
Arias, R.M., Heredia-Abarca, G., Sosa, V.J. & Fuentes-Ramírez, L.E. 2012. Diversity and abundance of arbuscular mycorrhizal fungi spores under different coffee production systems and in a tropical montane cloud forest patch in Veracruz, Mexico. Agrofor Syst. 85: 179-193.
Alvarado, G. 2010. Diversidad de maíces nativos de tres nichos ecológicos del altiplano poblano-tlaxclalteca. Instituto de Enseñanza e Investigación en Ciencias Agrícolas, México.
Alvarado, A., Chavarría, M., Guerrero, R., Boniche, J. & Navarro, J. 2004. Características edáficas y presencia de micorrizas. Agron Costarric. 28: 89-100.
Camargo-Ricalde, S.L. & Esperón-Rodríguez, M. 2005. Efecto de la heterogeneidad espacial y estacional del suelo sobre la abundancia de esporas de hongos micorrizógenos arbusculares en el valle semiárido de Tehuacán-Cuicatlán, México. Rev Biol Trop. 53: 339-352.
Becerra, A.G., Nouhra, E.R., Silva, M.P. & McKay, D. 2009. Ectomycorrhizae, arbuscular mycorrhizae, and dark-septate fungi on Salix humboldtiana in two riparian populations from central Argentina. Mycoscience. 50: 343-352.
Cardona, G., Peña-Venegas, P. & Arcos, A. 2008. Ocurrencia de hongos formadores de micorriza arbuscular asociados a ají (Capsicum sp.) en la Amazonia colombiana. Agron Colomb. 26: 459-470.
Colozzi Filho, A. & Cardoso Nogueira, E.J.B. 2000. Detecção de fungos micorrízicos arbusculares em raízes de Cafeeiro e de Crotalária cultivada na entrelinha. Pesq Agropec Bras. 35: 2033-2042.
Alarcón, A. & Ferrera-Cerrato, R. 1999. Manejo de la micorriza arbuscular en sistemas de propagación de plantas fruticolas. TERRA. 17: 179-191.
Aguilar-Fernández, M., Jaramillo, V.J., Varela-Fregoso, L. & Gavito, M.E. 2009. Short-term consequences of slash-and-burn practices on the arbuscular mycorrhizal fungi of a tropical dry forest. Mycorrhiza. 19: 179-186.
Cuadros, G.A., Gómez, S.R. & Rodríguez, L.N.F. 2011. Asociación simbiótica entre hongos micorrízicos arbusculares y el sistema radicular de plántulas de cacao (Theobroma cacao L.): efecto de la formononetina y la disponibilidad de fósforo en el suelo. Corpoica Cienc y Tecnol Agorpecuaria. 12: 77-85.
Cuervo, A.J.L. & Rivas, P.G.G. 2007. Cuantificación de hongos micorrícicos en muestras de suelo en plantaciones de Tabebuia rosea y Cordia alliodora. NOVA. 5: 1794-24701.
Bhardwaj, S., Dudeja, S.S. & Khurana, A.L. 1997. Distribution of vesicular-arbuscular mycorrhizal fungi in the natural ecosystem. Folia Microbiol. 42: 589-594.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2015-01-01
date_accessioned 2015-01-01T00:00:00Z
date_available 2015-01-01T00:00:00Z
url https://revistasojs.ucaldas.edu.co/index.php/agronomia/article/view/18
url_doi https://revistasojs.ucaldas.edu.co/index.php/agronomia/article/view/18
citationstartpage 20
citationendpage 34
url2_str_mv https://revistasojs.ucaldas.edu.co/index.php/agronomia/article/download/18/7
_version_ 1798191281246044160