Efecto de la retroalimentación visual sobre la velocidad de la marcha después de un accidente cerebrovascular: diseño de caso único

Introducción. La recuperación de la marcha es uno de los principales objetivos en rehabilitación después de un ACV. Basados en los principios de aprendizaje motor, se han desarrollado nuevas estrategias en neurorrehabilitación basadas en la práctica repetitiva, orientada a la tarea y la retroalimentación. Esto último ha demostrado ser una de las variables clave para el entrenamiento, por su fácil obtención y manipulación. Sin embargo, aún no existen estudios concluyentes que permitan identificar el efecto real de esta variable y su influencia en la recuperación y el desempeño funcional de la marcha. Objetivo. Determinar el efecto de la retroalimentación visual sobre la velocidad de la marcha después de un accidente cerebrovascular en adulto... Ver más

Guardado en:

2665-2056

5

2023-02-10

127

143

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Revista de Investigación e Innovación en Ciencias de la Salud - 2023

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id 25dfb9c5379d599acaa8957cdedfaebd
record_format ojs
institution FUNDACION UNIVERSITARIA MARIA CANO
thumbnail https://nuevo.metarevistas.org/FUNDACIONUNIVERSITARIAMARIACANO/logo.png
country_str Colombia
collection Revista de Investigación e Innovación en Ciencias de la Salud
title Efecto de la retroalimentación visual sobre la velocidad de la marcha después de un accidente cerebrovascular: diseño de caso único
spellingShingle Efecto de la retroalimentación visual sobre la velocidad de la marcha después de un accidente cerebrovascular: diseño de caso único
Castro-Medina, Karen Gizeth
Accidente cerebrovascular
retroalimentación
velocidad al caminar
rehabilitación
robótica
estudio de caso único
fisioterapia
trastornos neurológicos de la marcha
walking speed
feedback
Stroke
single-case study
rehabilitation
robotics
haptic technology
neurologic
gait disorders
physical therapy
title_short Efecto de la retroalimentación visual sobre la velocidad de la marcha después de un accidente cerebrovascular: diseño de caso único
title_full Efecto de la retroalimentación visual sobre la velocidad de la marcha después de un accidente cerebrovascular: diseño de caso único
title_fullStr Efecto de la retroalimentación visual sobre la velocidad de la marcha después de un accidente cerebrovascular: diseño de caso único
title_full_unstemmed Efecto de la retroalimentación visual sobre la velocidad de la marcha después de un accidente cerebrovascular: diseño de caso único
title_sort efecto de la retroalimentación visual sobre la velocidad de la marcha después de un accidente cerebrovascular: diseño de caso único
description Introducción. La recuperación de la marcha es uno de los principales objetivos en rehabilitación después de un ACV. Basados en los principios de aprendizaje motor, se han desarrollado nuevas estrategias en neurorrehabilitación basadas en la práctica repetitiva, orientada a la tarea y la retroalimentación. Esto último ha demostrado ser una de las variables clave para el entrenamiento, por su fácil obtención y manipulación. Sin embargo, aún no existen estudios concluyentes que permitan identificar el efecto real de esta variable y su influencia en la recuperación y el desempeño funcional de la marcha. Objetivo. Determinar el efecto de la retroalimentación visual sobre la velocidad de la marcha después de un accidente cerebrovascular en adultos con estadios subagudos y crónicos. Metodología. Diseño de caso único de línea de base múltiple, aleatorio no concurrente de cuatro participantes. Se evaluó la velocidad de la marcha determinando las diferencias en el nivel, la tendencia, la estabilidad de los datos y la no superposición de datos mediante el análisis visual basado en la documentación técnica para diseños de caso único de la What Works Clearinghouse. Resultados. Cuatro participantes con rango de edad de 19 a 73 años fueron incluidos en el estudio. El cambio en el nivel para todos los participantes demostró un incremento en los valores de la velocidad de la marcha después de la introducción de la intervención (media: 0.76 m/s). El análisis visual de la tendencia estimó aceleración para la línea de intervención para tres participantes. Los datos en la fase de base e intervención cumplieron el criterio de estabilidad medido con el método de banda de dos desviaciones estándar (media: 0.05 m/s); los patrones de cambio demostraron efecto inmediato con mejoría gradual durante la intervención para los participantes 1, 3 y 4. El porcentaje de no superposición de datos mostró efectividad de la intervención para tres de los participantes (PND >91.67%). Conclusiones. Los hallazgos presentados en este estudio representan un aporte científico que respalda la pertinencia del uso y aplicación de los principios de aprendizaje motor para el desarrollo de nuevas estrategias en rehabilitación motora. Sin embargo, este estudio constituye un primer paso para realizar estudios más robustos que incluyan replicación de las fases en el estudio y la evaluación del seguimiento para determinar la permanencia de los efectos a largo plazo.
description_eng Introduction. Gait recovery is one of the main goals in post-stroke rehabilitation. Based on the principles of motor learning, new strategies have been developed in neurorehabilitation based on repetitive, task-oriented practice, and feedback. The latter has proven to be one of the most critical variables for training, because it is easy to obtain and manipulate. However, there are still no conclusive studies to identify the real effect of this variable and its influence on recovery and functional gait performance. Objective. To determine the effect of visual feedback on gait speed after stroke in adults with subacute and chronic stages. Methodology. Single-case, multiple baseline, non-concurrent randomized, and four-participant design. Gait velocity was assessed by determining differences in level, trend, data stability, and nonoverlapping data using visual analysis based on technical documentation for single-case designs from the What Works Clearinghouse. Results. Four participants ranging in age from 19 to 73 years were included in the study. The change in level for all participants demonstrated an increase in gait velocity values after the introduction of the intervention (mean: 0.76 m/s). Visual trend analysis estimated acceleration for the intervention line for three participants. The data in the baseline and intervention phase met the stability criterion measured with the two standard deviation band method (mean: 0.05 m/s); patterns of change demonstrated immediate effect with gradual improvement during the intervention for participants 1, 3, and 4. The percentage of nonoverlapping data showed effectiveness of the intervention for three of the participants (PND >91.67%). Conclusions. The findings presented in this study represent a scientific contribution that supports the relevance of the use and application of motor learning principles for the development of new strategies in motor rehabilitation. However, this study constitutes a first step towards more robust studies that include replication of the phases in the study and follow-up evaluation to determine the permanence of long-term effects.
author Castro-Medina, Karen Gizeth
author_facet Castro-Medina, Karen Gizeth
topicspa_str_mv Accidente cerebrovascular
retroalimentación
velocidad al caminar
rehabilitación
robótica
estudio de caso único
fisioterapia
trastornos neurológicos de la marcha
topic Accidente cerebrovascular
retroalimentación
velocidad al caminar
rehabilitación
robótica
estudio de caso único
fisioterapia
trastornos neurológicos de la marcha
walking speed
feedback
Stroke
single-case study
rehabilitation
robotics
haptic technology
neurologic
gait disorders
physical therapy
topic_facet Accidente cerebrovascular
retroalimentación
velocidad al caminar
rehabilitación
robótica
estudio de caso único
fisioterapia
trastornos neurológicos de la marcha
walking speed
feedback
Stroke
single-case study
rehabilitation
robotics
haptic technology
neurologic
gait disorders
physical therapy
citationvolume 5
citationissue 1
publisher Fundación Universitaria María Cano
ispartofjournal Revista de Investigación e Innovación en Ciencias de la Salud
source https://riics.info/index.php/RCMC/article/view/153
language Español
format Article
rights This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
Revista de Investigación e Innovación en Ciencias de la Salud - 2023
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references Feigin VL, Norrving B, Mensah GA. Global Burden of Stroke. Circ Res. 2017;120:439–48. doi: https://doi.org/10.1161/CIRCRESAHA.116.308413 2. Chamarro-lusar A, Medina-casanovas J. Walking speed as a predictor of community mobility and quality of life after stroke. Top Stroke Rehabil. 2019;26:349–58. doi: https://doi.org/10.1080/10749357.2019.1605751 3. Saini V, Guada L, Yavagal DR. Global Epidemiology of Stroke and Access to Acute Ischemic Stroke Interventions. Neurology. 2021;97:S6–16. doi: https://doi.org/10.1212/WNL.0000000000012781 4. Lui SK, Nguyen MH. Elderly Stroke Rehabilitation: Overcoming the Complications and Its Associated Challenges. Curr Gerontol Geriatr Res. 2018;2018:1–9. doi: https://doi.org/10.1155/2018/9853837 5. Roelker SA, Bowden MG, Kautz SA, Neptune RR. Paretic propulsion as a measure of walking performance and functional motor recovery post-stroke: A review. Gait Posture. 2019;68:6–14. doi: https://doi.org/10.1016/j.gaitpost.2018.10.027 6. Beyaert C, Vasa R, Frykberg GE. Gait post-stroke: Pathophysiology and rehabilitation strategies. Neurophysiologie Clinique/Clinical Neurophysiology. 2015;45:335–55. doi: https://doi.org/10.1016/j.neucli.2015.09.005 7. Wonsetler EC, Bowden MG. A systematic review of mechanisms of gait speed change post-stroke. Part 2: exercise capacity, muscle activation, kinetics, and kinematics. Top Stroke Rehabil. 2017;24:394–403. doi: https://doi.org/10.1080/10749357.2017.1282413 8. Selves C, Stoquart G, Lejeune T. Gait rehabilitation after stroke: review of the evidence of predictors, clinical outcomes and timing for interventions. Acta Neurol Belg. 2020;120:783–90. doi: https://doi.org/10.1007/s13760-020-01320-7 9. Schröder J, Truijen S, Criekinge T, Saeys W. Feasibility and effectiveness of repetitive gait training early after stroke: A systematic review and meta-analysis. J Rehabil Med. 2019;51:78–88. doi: https://doi.org/10.2340/16501977-2505 10. Esquenazi A, Lee S, Wikoff A, Packel A, Toczylowski T, Feeley J. A Comparison of Locomotor Therapy Interventions: Partial-Body Weight−Supported Treadmill, Lokomat, and G-EO Training in People With Traumatic Brain Injury. PM&R. 2017;9:839–46. doi: https://doi.org/10.1016/j.pmrj.2016.12.010 11. Hornby TG, Reisman DS, Ward IG, Scheets PL, Miller A, Haddad D, et al. Clinical Practice Guideline to Improve Locomotor Function Following Chronic Stroke, Incomplete Spinal Cord Injury, and Brain Injury. Journal of Neurologic Physical Therapy. 2020;44:49–100. doi: https://doi.org/10.1097/NPT.0000000000000303 12. Rendos NK, Zajac-Cox L, Thomas R, Sato S, Eicholtz S, Kesar TM. Verbal feedback enhances motor learning during post-stroke gait retraining. Top Stroke Rehabil. 2021;28:362–77. doi: https://doi.org/10.1080/10749357.2020.1818480 13. Mendes FA dos S, Pompeu JE, Lobo AM, da Silva KG, Oliveira T de P, Zomignani AP, et al. Motor learning, retention and transfer after virtual-reality-based training in Parkinson’s disease - effect of motor and cognitive demands of games: A longitudinal, controlled clinical study. Physiotherapy (United Kingdom). 2012;98:217–23. doi: https://doi.org/10.1016/j.physio.2012.06.001 14. Pignolo L, Basta G, Carozzo S, Bilotta M, Todaro MR, Serra S, et al. A body-weight-supported visual feedback system for gait recovering in stroke patients: A randomized controlled study. Gait Posture. 2020;82:287–93. doi: https://doi.org/10.1016/j.gaitpost.2020.09.020 15. Hasegawa N, Takeda K, Sakuma M, Mani H, Maejima H. Gait & Posture Learning effects of dynamic postural control by auditory biofeedback versus visual biofeedback training. Gait Posture. 2017;58:188–93. doi: https://doi.org/10.1016/j.gaitpost.2017.08.001 16. Walker ER, Hyngstrom AS, Schmit BD. Influence of visual feedback on dynamic balance control in chronic stroke survivors. J Biomech. 2016;49:698–703. doi: https://doi.org/10.1016/j.jbiomech.2016.01.028 17. Shin J, Chung Y. Influence of visual feedback and rhythmic auditory cue on walking of chronic stroke patient induced by treadmill walking in real-time basis. NeuroRehabilitation. 2017;41:445–52. doi: https://doi.org/10.3233/NRE-162139. 18. Druzbicki M, Przysada G, Guzik A, Brzozowska-Magoń A, Kołodziej K, Wolan-Nieroda A, et al. The efficacy of gait training using a body weight support treadmill and visual biofeedback in patients with subacute stroke: A randomized controlled trial. Biomed Res Int. 2018. doi: https://doi.org/10.1155/2018/3812602 19. Proulx CE, Louis Jean MT, Higgins J, Gagnon DH, Dancause N. Somesthetic, Visual, and Auditory Feedback and Their Interactions Applied to Upper Limb Neurorehabilitation Technology: A Narrative Review to Facilitate Contextualization of Knowledge. Frontiers in Rehabilitation Sciences. 2022;3. doi: https://doi.org/10.3389/fresc.2022.789479 20. Kim J-S, Oh D-W. Use of real-time visual feedback during overground walking training on gait symmetry and velocity in patients with post-stroke hemiparesis: randomized controlled, single-blind study. International Journal of Rehabilitation Research. 2020;43:247–54. doi: https://doi.org/10.1097/MRR.0000000000000419 21. van Kammen K, Boonstra AM, van der Woude LH v., Visscher C, Reinders-Messelink HA, den Otter R. Lokomat guided gait in hemiparetic stroke patients: the effects of training parameters on muscle activity and temporal symmetry. Disabil Rehabil. 2020;42:2977–85. doi: https://doi.org/10.1080/09638288.2019.1579259 22. Lobo MA, Moeyaert M, Baraldi Cunha A, Babik I. Single-Case Design, Analysis, and Quality Assessment for Intervention Research. Journal of Neurologic Physical Therapy 2017. https://doi.org/10.1097/NPT.0000000000000187 23. Cheng DK, Nelson M, Brooks D, Salbach NM. Validation of stroke-specific protocols for the 10-meter walk test and 6-minute walk test conducted using 15-meter and 30-meter walkways. Top Stroke Rehabil. 2020;27:251–61. doi: https://doi.org/10.1080/10749357.2019.1691815 24. Dalgas U, Severinsen K, Overgaard K. Relations Between 6 Minute Walking Distance and 10 Meter Walking Speed in Patients With Multiple Sclerosis and Stroke. Arch Phys Med Rehabil. 2012;93:1167–72. doi: https://doi.org/10.1016/j.apmr.2012.02.026 25. Tamburella F, Moreno JC, Sofía D, Valenzuela H, Pisotta I, Iosa M, et al. Influences of the biofeedback content on robotic post-stroke gait rehabilitation: electromyographic vs joint torque biofeedback. J NeuroEngineering Rehabil. 2019;16:95. doi: https://doi.org/10.1186/s12984-019-0558-0 26. Kratochwill, T.R; Hitchcock J. Single-case design technical documentation. 2010. Disponible en: https://files.eric.ed.gov/fulltext/ED510743.pdf 27. Tate RL, Perdices M, Rosenkoetter U, Shadish W, Vohra S, Barlow DH, et al. The Single-Case Reporting Guideline In BEhavioural Interventions (SCRIBE) 2016 Statement. Phys Ther. 2016;96:e1–10. doi: https://doi.org/10.2522/ptj.2016.96.7.e1 28. Lane JD, Gast DL. Visual analysis in single case experimental design studies: Brief review and guidelines. Neuropsychol Rehabil. 2014;24:445–63. doi: https://doi.org/10.1080/09602011.2013.815636 29. Arnout Tilgenkamp. Theil–Sen estimator: Robust regression for slope estimation between 1 dimensional X and y. Version 1.0 [software]. Disponible en: https://www.mathworks.com/matlabcentral/fileexchange/34308-theil-sen-estimator?s_tid=FX_rc2_behav 30. Bulté I, Onghena P. The Single-Case Data Analysis Package: Analysing Single-Case Experiments with R Software. Journal of Modern Applied Statistical Methods. 2013;12:450–78. doi: https://doi.org/10.22237/jmasm/1383280020 31. Krasny-Pacini A, Evans J. Single-case experimental designs to assess intervention effectiveness in rehabilitation: A practical guide. Ann Phys Rehabil Med. 2018;61:164–79. doi: https://doi.org/10.1016/j.rehab.2017.12.002 32. Gast DL. Single Subject Research Methodology in Behavioral Sciences. 1st ed. Georgia: Routledge; 2010. 33. Pak NW, Lee JH. Effects of visual feedback training and visual targets on muscle activation, balancing, and walking ability in adults after hemiplegic stroke: A preliminary, randomized, controlled study. International Journal of Rehabilitation Research. 2020:76–81. doi: https://doi.org/10.1097/MRR.0000000000000376 34. Genthe K, Schenck C, Eicholtz S, Zajac-cox L, Kesar TM, Rehabilitation N, et al. Effects of real-time gait biofeedback on paretic propulsion and gait biomechanics in individuals post-stroke. Top Stroke Rehabil. 2019;25:186–93. doi: https://doi.org/10.1080/10749357.2018.1436384.Effects 35. Kim J, Oh D. Use of real-time visual feedback during overground walking training on gait symmetry and velocity in patients with post- stroke hemiparesis: randomized controlled, single-blind study. International Journal of Rehabilitation Research. 2020;43(3):247–54. doi: https://doi.org/10.1097/MRR.0000000000000419 36. Lewek MD, Feasel J, Wentz E, Brooks FP, Whitton MC. Use of Visual and Proprioceptive Feedback to Improve Gait Speed and Spatiotemporal Symmetry Following Chronic Stroke: A Case Series. Phys Ther. 2012;92:748–56. doi: https://doi.org/10.2522/ptj.20110206
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2023-02-10
date_accessioned 2023-02-10T17:33:17Z
date_available 2023-02-10T17:33:17Z
url https://riics.info/index.php/RCMC/article/view/153
url_doi https://doi.org/10.46634/riics.153
eissn 2665-2056
doi 10.46634/riics.153
citationstartpage 127
citationendpage 143
url2_str_mv https://riics.info/index.php/RCMC/article/download/153/637
https://riics.info/index.php/RCMC/article/download/153/634
url4_str_mv https://riics.info/index.php/RCMC/article/download/153/636
https://riics.info/index.php/RCMC/article/download/153/633
url3_str_mv https://riics.info/index.php/RCMC/article/download/153/632
https://riics.info/index.php/RCMC/article/download/153/635
_version_ 1797159894862790656
spelling Efecto de la retroalimentación visual sobre la velocidad de la marcha después de un accidente cerebrovascular: diseño de caso único
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
text/xml
Efecto de la retroalimentación visual sobre la velocidad de la marcha después de un accidente cerebrovascular: diseño de caso único
text/html
text/xml
application/pdf
https://riics.info/index.php/RCMC/article/view/153
Español
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
Revista de Investigación e Innovación en Ciencias de la Salud - 2023
Feigin VL, Norrving B, Mensah GA. Global Burden of Stroke. Circ Res. 2017;120:439–48. doi: https://doi.org/10.1161/CIRCRESAHA.116.308413 2. Chamarro-lusar A, Medina-casanovas J. Walking speed as a predictor of community mobility and quality of life after stroke. Top Stroke Rehabil. 2019;26:349–58. doi: https://doi.org/10.1080/10749357.2019.1605751 3. Saini V, Guada L, Yavagal DR. Global Epidemiology of Stroke and Access to Acute Ischemic Stroke Interventions. Neurology. 2021;97:S6–16. doi: https://doi.org/10.1212/WNL.0000000000012781 4. Lui SK, Nguyen MH. Elderly Stroke Rehabilitation: Overcoming the Complications and Its Associated Challenges. Curr Gerontol Geriatr Res. 2018;2018:1–9. doi: https://doi.org/10.1155/2018/9853837 5. Roelker SA, Bowden MG, Kautz SA, Neptune RR. Paretic propulsion as a measure of walking performance and functional motor recovery post-stroke: A review. Gait Posture. 2019;68:6–14. doi: https://doi.org/10.1016/j.gaitpost.2018.10.027 6. Beyaert C, Vasa R, Frykberg GE. Gait post-stroke: Pathophysiology and rehabilitation strategies. Neurophysiologie Clinique/Clinical Neurophysiology. 2015;45:335–55. doi: https://doi.org/10.1016/j.neucli.2015.09.005 7. Wonsetler EC, Bowden MG. A systematic review of mechanisms of gait speed change post-stroke. Part 2: exercise capacity, muscle activation, kinetics, and kinematics. Top Stroke Rehabil. 2017;24:394–403. doi: https://doi.org/10.1080/10749357.2017.1282413 8. Selves C, Stoquart G, Lejeune T. Gait rehabilitation after stroke: review of the evidence of predictors, clinical outcomes and timing for interventions. Acta Neurol Belg. 2020;120:783–90. doi: https://doi.org/10.1007/s13760-020-01320-7 9. Schröder J, Truijen S, Criekinge T, Saeys W. Feasibility and effectiveness of repetitive gait training early after stroke: A systematic review and meta-analysis. J Rehabil Med. 2019;51:78–88. doi: https://doi.org/10.2340/16501977-2505 10. Esquenazi A, Lee S, Wikoff A, Packel A, Toczylowski T, Feeley J. A Comparison of Locomotor Therapy Interventions: Partial-Body Weight−Supported Treadmill, Lokomat, and G-EO Training in People With Traumatic Brain Injury. PM&R. 2017;9:839–46. doi: https://doi.org/10.1016/j.pmrj.2016.12.010 11. Hornby TG, Reisman DS, Ward IG, Scheets PL, Miller A, Haddad D, et al. Clinical Practice Guideline to Improve Locomotor Function Following Chronic Stroke, Incomplete Spinal Cord Injury, and Brain Injury. Journal of Neurologic Physical Therapy. 2020;44:49–100. doi: https://doi.org/10.1097/NPT.0000000000000303 12. Rendos NK, Zajac-Cox L, Thomas R, Sato S, Eicholtz S, Kesar TM. Verbal feedback enhances motor learning during post-stroke gait retraining. Top Stroke Rehabil. 2021;28:362–77. doi: https://doi.org/10.1080/10749357.2020.1818480 13. Mendes FA dos S, Pompeu JE, Lobo AM, da Silva KG, Oliveira T de P, Zomignani AP, et al. Motor learning, retention and transfer after virtual-reality-based training in Parkinson’s disease - effect of motor and cognitive demands of games: A longitudinal, controlled clinical study. Physiotherapy (United Kingdom). 2012;98:217–23. doi: https://doi.org/10.1016/j.physio.2012.06.001 14. Pignolo L, Basta G, Carozzo S, Bilotta M, Todaro MR, Serra S, et al. A body-weight-supported visual feedback system for gait recovering in stroke patients: A randomized controlled study. Gait Posture. 2020;82:287–93. doi: https://doi.org/10.1016/j.gaitpost.2020.09.020 15. Hasegawa N, Takeda K, Sakuma M, Mani H, Maejima H. Gait & Posture Learning effects of dynamic postural control by auditory biofeedback versus visual biofeedback training. Gait Posture. 2017;58:188–93. doi: https://doi.org/10.1016/j.gaitpost.2017.08.001 16. Walker ER, Hyngstrom AS, Schmit BD. Influence of visual feedback on dynamic balance control in chronic stroke survivors. J Biomech. 2016;49:698–703. doi: https://doi.org/10.1016/j.jbiomech.2016.01.028 17. Shin J, Chung Y. Influence of visual feedback and rhythmic auditory cue on walking of chronic stroke patient induced by treadmill walking in real-time basis. NeuroRehabilitation. 2017;41:445–52. doi: https://doi.org/10.3233/NRE-162139. 18. Druzbicki M, Przysada G, Guzik A, Brzozowska-Magoń A, Kołodziej K, Wolan-Nieroda A, et al. The efficacy of gait training using a body weight support treadmill and visual biofeedback in patients with subacute stroke: A randomized controlled trial. Biomed Res Int. 2018. doi: https://doi.org/10.1155/2018/3812602 19. Proulx CE, Louis Jean MT, Higgins J, Gagnon DH, Dancause N. Somesthetic, Visual, and Auditory Feedback and Their Interactions Applied to Upper Limb Neurorehabilitation Technology: A Narrative Review to Facilitate Contextualization of Knowledge. Frontiers in Rehabilitation Sciences. 2022;3. doi: https://doi.org/10.3389/fresc.2022.789479 20. Kim J-S, Oh D-W. Use of real-time visual feedback during overground walking training on gait symmetry and velocity in patients with post-stroke hemiparesis: randomized controlled, single-blind study. International Journal of Rehabilitation Research. 2020;43:247–54. doi: https://doi.org/10.1097/MRR.0000000000000419 21. van Kammen K, Boonstra AM, van der Woude LH v., Visscher C, Reinders-Messelink HA, den Otter R. Lokomat guided gait in hemiparetic stroke patients: the effects of training parameters on muscle activity and temporal symmetry. Disabil Rehabil. 2020;42:2977–85. doi: https://doi.org/10.1080/09638288.2019.1579259 22. Lobo MA, Moeyaert M, Baraldi Cunha A, Babik I. Single-Case Design, Analysis, and Quality Assessment for Intervention Research. Journal of Neurologic Physical Therapy 2017. https://doi.org/10.1097/NPT.0000000000000187 23. Cheng DK, Nelson M, Brooks D, Salbach NM. Validation of stroke-specific protocols for the 10-meter walk test and 6-minute walk test conducted using 15-meter and 30-meter walkways. Top Stroke Rehabil. 2020;27:251–61. doi: https://doi.org/10.1080/10749357.2019.1691815 24. Dalgas U, Severinsen K, Overgaard K. Relations Between 6 Minute Walking Distance and 10 Meter Walking Speed in Patients With Multiple Sclerosis and Stroke. Arch Phys Med Rehabil. 2012;93:1167–72. doi: https://doi.org/10.1016/j.apmr.2012.02.026 25. Tamburella F, Moreno JC, Sofía D, Valenzuela H, Pisotta I, Iosa M, et al. Influences of the biofeedback content on robotic post-stroke gait rehabilitation: electromyographic vs joint torque biofeedback. J NeuroEngineering Rehabil. 2019;16:95. doi: https://doi.org/10.1186/s12984-019-0558-0 26. Kratochwill, T.R; Hitchcock J. Single-case design technical documentation. 2010. Disponible en: https://files.eric.ed.gov/fulltext/ED510743.pdf 27. Tate RL, Perdices M, Rosenkoetter U, Shadish W, Vohra S, Barlow DH, et al. The Single-Case Reporting Guideline In BEhavioural Interventions (SCRIBE) 2016 Statement. Phys Ther. 2016;96:e1–10. doi: https://doi.org/10.2522/ptj.2016.96.7.e1 28. Lane JD, Gast DL. Visual analysis in single case experimental design studies: Brief review and guidelines. Neuropsychol Rehabil. 2014;24:445–63. doi: https://doi.org/10.1080/09602011.2013.815636 29. Arnout Tilgenkamp. Theil–Sen estimator: Robust regression for slope estimation between 1 dimensional X and y. Version 1.0 [software]. Disponible en: https://www.mathworks.com/matlabcentral/fileexchange/34308-theil-sen-estimator?s_tid=FX_rc2_behav 30. Bulté I, Onghena P. The Single-Case Data Analysis Package: Analysing Single-Case Experiments with R Software. Journal of Modern Applied Statistical Methods. 2013;12:450–78. doi: https://doi.org/10.22237/jmasm/1383280020 31. Krasny-Pacini A, Evans J. Single-case experimental designs to assess intervention effectiveness in rehabilitation: A practical guide. Ann Phys Rehabil Med. 2018;61:164–79. doi: https://doi.org/10.1016/j.rehab.2017.12.002 32. Gast DL. Single Subject Research Methodology in Behavioral Sciences. 1st ed. Georgia: Routledge; 2010. 33. Pak NW, Lee JH. Effects of visual feedback training and visual targets on muscle activation, balancing, and walking ability in adults after hemiplegic stroke: A preliminary, randomized, controlled study. International Journal of Rehabilitation Research. 2020:76–81. doi: https://doi.org/10.1097/MRR.0000000000000376 34. Genthe K, Schenck C, Eicholtz S, Zajac-cox L, Kesar TM, Rehabilitation N, et al. Effects of real-time gait biofeedback on paretic propulsion and gait biomechanics in individuals post-stroke. Top Stroke Rehabil. 2019;25:186–93. doi: https://doi.org/10.1080/10749357.2018.1436384.Effects 35. Kim J, Oh D. Use of real-time visual feedback during overground walking training on gait symmetry and velocity in patients with post- stroke hemiparesis: randomized controlled, single-blind study. International Journal of Rehabilitation Research. 2020;43(3):247–54. doi: https://doi.org/10.1097/MRR.0000000000000419 36. Lewek MD, Feasel J, Wentz E, Brooks FP, Whitton MC. Use of Visual and Proprioceptive Feedback to Improve Gait Speed and Spatiotemporal Symmetry Following Chronic Stroke: A Case Series. Phys Ther. 2012;92:748–56. doi: https://doi.org/10.2522/ptj.20110206
Artículo de revista
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
http://purl.org/redcol/resource_type/ART
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
text/html
application/pdf
Publication
Introducción. La recuperación de la marcha es uno de los principales objetivos en rehabilitación después de un ACV. Basados en los principios de aprendizaje motor, se han desarrollado nuevas estrategias en neurorrehabilitación basadas en la práctica repetitiva, orientada a la tarea y la retroalimentación. Esto último ha demostrado ser una de las variables clave para el entrenamiento, por su fácil obtención y manipulación. Sin embargo, aún no existen estudios concluyentes que permitan identificar el efecto real de esta variable y su influencia en la recuperación y el desempeño funcional de la marcha. Objetivo. Determinar el efecto de la retroalimentación visual sobre la velocidad de la marcha después de un accidente cerebrovascular en adultos con estadios subagudos y crónicos. Metodología. Diseño de caso único de línea de base múltiple, aleatorio no concurrente de cuatro participantes. Se evaluó la velocidad de la marcha determinando las diferencias en el nivel, la tendencia, la estabilidad de los datos y la no superposición de datos mediante el análisis visual basado en la documentación técnica para diseños de caso único de la What Works Clearinghouse. Resultados. Cuatro participantes con rango de edad de 19 a 73 años fueron incluidos en el estudio. El cambio en el nivel para todos los participantes demostró un incremento en los valores de la velocidad de la marcha después de la introducción de la intervención (media: 0.76 m/s). El análisis visual de la tendencia estimó aceleración para la línea de intervención para tres participantes. Los datos en la fase de base e intervención cumplieron el criterio de estabilidad medido con el método de banda de dos desviaciones estándar (media: 0.05 m/s); los patrones de cambio demostraron efecto inmediato con mejoría gradual durante la intervención para los participantes 1, 3 y 4. El porcentaje de no superposición de datos mostró efectividad de la intervención para tres de los participantes (PND >91.67%). Conclusiones. Los hallazgos presentados en este estudio representan un aporte científico que respalda la pertinencia del uso y aplicación de los principios de aprendizaje motor para el desarrollo de nuevas estrategias en rehabilitación motora. Sin embargo, este estudio constituye un primer paso para realizar estudios más robustos que incluyan replicación de las fases en el estudio y la evaluación del seguimiento para determinar la permanencia de los efectos a largo plazo.
Accidente cerebrovascular
retroalimentación
velocidad al caminar
rehabilitación
robótica
estudio de caso único
fisioterapia
trastornos neurológicos de la marcha
walking speed
Introduction. Gait recovery is one of the main goals in post-stroke rehabilitation. Based on the principles of motor learning, new strategies have been developed in neurorehabilitation based on repetitive, task-oriented practice, and feedback. The latter has proven to be one of the most critical variables for training, because it is easy to obtain and manipulate. However, there are still no conclusive studies to identify the real effect of this variable and its influence on recovery and functional gait performance. Objective. To determine the effect of visual feedback on gait speed after stroke in adults with subacute and chronic stages. Methodology. Single-case, multiple baseline, non-concurrent randomized, and four-participant design. Gait velocity was assessed by determining differences in level, trend, data stability, and nonoverlapping data using visual analysis based on technical documentation for single-case designs from the What Works Clearinghouse. Results. Four participants ranging in age from 19 to 73 years were included in the study. The change in level for all participants demonstrated an increase in gait velocity values after the introduction of the intervention (mean: 0.76 m/s). Visual trend analysis estimated acceleration for the intervention line for three participants. The data in the baseline and intervention phase met the stability criterion measured with the two standard deviation band method (mean: 0.05 m/s); patterns of change demonstrated immediate effect with gradual improvement during the intervention for participants 1, 3, and 4. The percentage of nonoverlapping data showed effectiveness of the intervention for three of the participants (PND >91.67%). Conclusions. The findings presented in this study represent a scientific contribution that supports the relevance of the use and application of motor learning principles for the development of new strategies in motor rehabilitation. However, this study constitutes a first step towards more robust studies that include replication of the phases in the study and follow-up evaluation to determine the permanence of long-term effects.
Castro-Medina, Karen Gizeth
5
feedback
1
Stroke
single-case study
rehabilitation
Journal article
Revista de Investigación e Innovación en Ciencias de la Salud
Fundación Universitaria María Cano
robotics
haptic technology
neurologic
gait disorders
physical therapy
2023-02-10T17:33:17Z
2023-02-10T17:33:17Z
2023-02-10
10.46634/riics.153
https://riics.info/index.php/RCMC/article/download/153/637
https://riics.info/index.php/RCMC/article/download/153/636
https://doi.org/10.46634/riics.153
https://riics.info/index.php/RCMC/article/download/153/634
https://riics.info/index.php/RCMC/article/download/153/633
https://riics.info/index.php/RCMC/article/download/153/632
143
127
2665-2056
https://riics.info/index.php/RCMC/article/download/153/635