Obtención de un colorante a partir de corteza de maracuyá con el uso de técnicas convencionales de extracción

El maracuyá es un fruto tropical que se cultiva primordialmente para la obtención de pulpa, siendo la corteza su principal subproducto que carece, en la actualidad, de interés industrial; sin embargo, con el fin de diversificar los derivados provenientes de la producción de maracuyá, se ha demostrado que la corteza contiene carotenoides, dentro de los que se destaca el β-caroteno y la luteína, que podrían ser utilizados en alimentos, debido a su poder antioxidante e, incluso, como colorante natural alternativo. Por lo anterior, el objetivo de este trabajo fue obtener un extracto rico en carotenoides a partir de su corteza; para ello, se evaluó la extracción con etanol, mediante tres técnicas: inmersión, baño termostático y soxhlet. El mayor... Ver más

Guardado en:

0123-4226

2619-2551

23

2020-06-30

http://purl.org/coar/access_right/c_abf2

info:eu-repo/semantics/openAccess

Martha Tarazona Díaz, Nubia Becerra, Johan Piedra, Richard Beltrán - 2020

id 204a2543fb9e2f7cd531079c339ca487
record_format ojs
spelling Obtención de un colorante a partir de corteza de maracuyá con el uso de técnicas convencionales de extracción
HERRERA-RAMIREZ, J.; MENESES-MARENTES, N.; TARAZONA-DÍAZ, M.P. 2019. Optimizing the extraction of anthocyanins from purple passion fruit peel using response surface methodology. J. Food Meas. Charact. https://doi.org/10.1007/s11694-019-00280-8
MOJICA, L.; BERHOW, M.; GONZALEZ DE MEJIA, E. 2017. Black bean anthocyanin-rich extracts as food colorants: Physicochemical stability and antidiabetes potential. Food Chem. 229:628-639. https://doi.org/10.1016/j.foodchem.2017.02.124
MCCANN, D.; BARRETT, A.; COOPER, A.; CRUMPLER, D.; DALEN, L.; GRIMSHAW, K.; KITCHIN, E.; LOK, K.; PORTEOUS, L.; PRINCE, E.; SONUGA-BARKE, E.; WARNER, J.O.; STEVENSON, J. 2007. Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: a randomised, double-blinded, placebo-controlled trial. Lancet 370(9598):1560-1567. https://doi.org/10.1016/S0140-6736(07)61306-3
LEÃO, K.M.M.; SAMPAIO, K.L.; PAGANI, A.A.C.; DA SILVA, M.A.A.P. 2014. Odor potency, aroma profile and volatiles composition of cold pressed oil from industrial passion fruit residues. Ind. Crop. Prod. 58:280-286. https://doi.org/10.1016/j.indcrop.2014.04.032
KULKARNI, S.G.; VIJAYANAND, P. 2010. Effect of extraction conditions on the quality characteristics of pectin from passion fruit peel (Passiflora edulis f. flavicarpa L.). LWT-Food Sci. Technol. 43(7):1026-1031. https://doi.org/10.1016/j.lwt.2009.11.006
KIM, B.; PARK, B. 2018. Saffron carotenoids inhibit STAT3 activation and promote apoptotic progression in IL-6-stimulated liver cancer cells. Oncol. Rep. 39(4):1883-1891. https://doi.org/10.3892/or.2018.6232
KHAZAEI, K.M.; JAFARI, S.M.; GHORBANI, M.; KAKHKI, A.H.; SARFARAZI, M. 2016. Optimization of Anthocyanin Extraction from Saffron Petals with Response Surface Methodology. Food Anal. Methods. 9(7):1993-2001. https://doi.org/10.1007/s12161-015-0375-4
JUÁREZ, M.C.; ECHÁVARRI, J.F.; NEGUERUELA, A.I. 1997. A proposal for a method to measure the colour of red wines by measuring transmittance at three wavelengths. Food Sci. Technol. Int. 3(3):189-193. https://doi.org/10.1177/108201329700300306
HERNÁNDEZ-SANTOS, B.; DE LOS ÁNGELES VIVAR-VERA, M.; RODRÍGUEZ-MIRANDA, J.; HERMAN-LARA, E.; TORRUCO-UCO, J.G.; ACEVEDO-VENDRELL, O.; MARTÍNEZ-SÁNCHEZ, C.E. 2015. Dietary fibre and antioxidant compounds in passion fruit (Passiflora edulis f. flavicarpa) peel and depectinised peel waste. Int. J. Food Sci. Technol. 50(1):268-274. https://doi.org/10.1111/ijfs.12647
NAGATA, M.; YAMASHITA, I. 1992. Simple Method for Simultaneous Determination of Chlorophyll and Carotenoids in Tomato Fruit. J. Japan Soc. Food Sci. 39(10):925-928. https://doi.org/10.3136/nskkk1962.39.925
GU, Z.; DEMING, C.; YONGBIN, H.; ZHIGANG, C.; FEIRONG, G. 2008. Optimization of carotenoids extraction from Rhodobacter sphaeroides. LWT-Food Sci. Technol. 41(6):1082-1088. https://doi.org/10.1016/j.lwt.2007.07.005
ELIK, A.; YANIK, D.K.; GÖĞÜŞ, F. 2020. Microwave-assisted extraction of carotenoids from carrot juice processing waste using flaxseed oil as a solvent. LWT-Food Sci. Technol. 123:109100. https://doi.org/10.1016/j.lwt.2020.109100
DOS REIS, L.C.R.; FACCO, E.M.P.; SALVADOR, M.; FLÔRES, S.H.; DE OLIVEIRA RIOS, A. 2018. Antioxidant potential and physicochemical characterization of yellow, purple and orange passion fruit. J. Food Sci. echnol. 55(7):2679-2691. https://doi.org/10.1007/s13197-018-3190-2
DO ESPÍRITO SANTO, A.P.; PEREGO, P.; CONVERTI, A.; OLIVEIRA, M. N. 2012. Influence of milk type and addition of passion fruit peel powder on fermentation kinetics, texture profile and bacterial viability in probiotic yoghurts. LWT-Food Sci. Technol. 47(2):393-399. https://doi.org/10.1016/j.lwt.2012.01.038
DE OLIVEIRA, G.A.; DE CASTILHOS, F.; RENARD, C.M.-G.; BUREAU, S. 2014. Comparison of NIR and MIR spectroscopic methods for determination of individual sugars, organic acids and carotenoids in passion fruit. Food Res. Int. 60:154-162. https://doi.org/10.1016/j.foodres.2013.10.051
DE OLIVEIRA, C.F.; GIORDANI, D.; GURAK, P.D.; CLADERA-OLIVERA, F.; MARCZAK, L.D.F. 2015. Extraction of pectin from passion fruit peel using moderate electric field and conventional heating extraction methods. Innov. Food Sci. Emerg. Technol. 29:201-208. https://doi.org/10.1016/j.ifset.2015.02.005
DE ANDRADE, M.; CHARALAMPOPOULOS, D.; CHATZIFRAGKOU, A. 2018. Optimisation and modelling of supercritical CO2 extraction process of carotenoids from carrot peels. J. Supercrit. Fluid. 133:94-102. https://doi.org/10.1016/j.supflu.2017.09.028
BRENNAN, J.G.; GRANDISON, A.S.; LEWIS, M.J. 2006. Separations in food processing. En: Brennan J.G. (Ed.). Food Processing Handbook. 3st Ed. Wiley-vch verlag GmbH & Co. KGaA (Weinheim). p.455-464.
MYERS, R.H.; MONTGOMERY, D.C. 2002. Building Empirical Model. En: Myers R.H.; Montgomery, D.C. (Eds.). Response Surface Methodology Process and Product Optimization Using Designed Experiments. 2nd Ed. Wiley-Interscience (New York). p.17-74.
NASCIMENTO, T.A.; CALADO, V.; CARVALHO, C.W.P. 2012. Development and characterization of flexible film based on starch and passion fruit mesocarp flour with nanoparticles. Food Res. Int. 49(1):588-595. https://doi.org/10.1016/j.foodres.2012.07.051
BENMEZIANE, A.; BOULEKBACHE-MAKHLOUF, L.; MAPELLI-BRAHM, P.; KHALED KHODJA, N.; REMINI, H.; MADANI, K.; MELÉNDEZ-MARTÍNEZ, A.J. 2018, Extraction of carotenoids from cantaloupe waste and determination of its mineral composition. Food Res. Int. 111:391-398. https://doi.org/10.1016/j.foodres.2018.05.044
info:eu-repo/semantics/article
Text
http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_1843
http://purl.org/coar/resource_type/c_6501
WU, J.; CHO, E.; WILLETT, W.C.; SASTRY, S.M.; SCHAUMBERG, D.A. 2015. Intakes of lutein, zeaxanthin, and other carotenoids and age-related macular degeneration during 2 decades of prospective follow-up. JAMA Ophthalmol. 133(12):1415-1424. https://doi.org/10.1001/jamaophthalmol.2015.3590
RODRIGUEZ-AMAYA, D.B. 2012. Passion Fruit. En: Siddiq, M. (Ed.). Tropical and Subtropical Fruits: Postharvest, Physiology, Processing and Packaging. Ed. Wiley-Blackwell (Oxford). p.324-329. https://doi.org/10.1002/9781118324097
WIJERATNAM, S.W. 2016. Passion Fruit. En: Caballero, B.; Finglas, P.M.; Toldrá, F. (Eds.). Encyclopedia of Food and Health. Ed. Elsevier (Oxford). p.230-234. https://doi.org/10.1016/b978-0-12-384947-2.00521-3
VIANNA-SILVA, T.; LIMA, R.V.; DE AZEVEDO, I.G.; ROSA, R.C.C.; DE SOUZA, M.S.; DE OLIVEIRA, J.G. 2010. Determinação da maturidade fisiológica de frutos de maracujazeiro-amarelo colhidos na região norte do estado do Rio de Janeiro, Brasil. Rev. Bras. Frutic. 32(1):57-66. https://doi.org/10.1590/s0100-29452010005000012
TARAZONA-DÍAZ, M.P.; AGUAYO, E. 2013. Influence of acidification, pasteurization, centrifugation and storage time and temperature on watermelon juice quality. J. Sci Food Agric. 93(15):3863-3869. https://doi.org/10.1002/jsfa.6332
SIGURDSON, G.T.; TANG, P.; GIUSTI, M.M. 2017. Natural colorants: food colorants from natural sources. Annu. Rev. Food Sci. Technol. 8(1):261-280. https://doi.org/10.1146/annurev-food-030216-025923
SANTOS, E.; ANDRADE, R.; GOUVEIA, E. 2017. Utilization of the pectin and pulp of the passion fruit from Caatinga as probiotic food carriers. Food Biosci. 20:56-61. https://doi.org/10.1016/j.fbio.2017.08.005
SÁNCHEZ-CAMARGO, A. DEL P.; GUTIÉRREZ, L.F.; VARGAS, S.M.; MARTINEZ-CORREA, H.A.; PARADA-ALFONSO, F.; NARVÁEZ-CUENCA, C.E. 2019. Valorisation of mango peel: Proximate composition, supercritical fluid extraction of carotenoids, and application as an antioxidant additive for an edible oil. J. Supercrit. Fluid. 152:104574. https://doi.org/10.1016/j.supflu.2019.104574
SAINI, R.K.; KEUM, Y.-S. 2018. Carotenoid extraction methods: A review of recent developments. Food Chem. 240:90-103. https://doi.org/10.1016/j.foodchem.2017.07.099
SAHIN, S.; SUMMU, S.G. 2009. Propiedades elecromagnéticas. En: Sahin, S.; Summu, S. (Eds.). Propiedades físicas de los alimentos. Ed. Acribia S.A. (Zaragoza). p.190-203.
BHATT, D.; VYAS, K.; SINGH, S.; JOHN, P.J.; SONI, I. 2018. Tartrazine induced neurobiochemical alterations in rat brain sub-regions. Food Chem. Toxicol. 113:322-327. https://doi.org/10.1016/j.fct.2018.02.011
BETIM CAZARIN, C.B.; DA SILVA, J.K.; COLOMEU, T.C.; DE LIMA ZOLLNER, R.; MARÓSTICA JUNIOR, M.R. 2014. Capacidade antioxidante e composição química da casca de maracujá (Passiflora edulis). Cienc. Rural 44(9):1699-1704. https://doi.org/10.1590/0103-8478cr20131437
BATADA, A.; JACOBSON, M.F. 2016. Prevalence of Artificial Food Colors in Grocery Store Products Marketed to Children. Clin. Pediat. 55(12):1113-1119. https://doi.org/10.1177/0009922816651621
application/xml
El maracuyá es un fruto tropical que se cultiva primordialmente para la obtención de pulpa, siendo la corteza su principal subproducto que carece, en la actualidad, de interés industrial; sin embargo, con el fin de diversificar los derivados provenientes de la producción de maracuyá, se ha demostrado que la corteza contiene carotenoides, dentro de los que se destaca el β-caroteno y la luteína, que podrían ser utilizados en alimentos, debido a su poder antioxidante e, incluso, como colorante natural alternativo. Por lo anterior, el objetivo de este trabajo fue obtener un extracto rico en carotenoides a partir de su corteza; para ello, se evaluó la extracción con etanol, mediante tres técnicas: inmersión, baño termostático y soxhlet. El mayor rendimiento, se obtuvo con el método soxhlet; para esta técnica, se estudió el efecto de la concentración de etanol (entre 80% y 90% v/v), la proporción solvente-materia prima (con relaciones entre 40:1 y 50:1) y el tiempo (definido entre 90 y 150 minutos). Los resultados, se analizaron mediante modelo de superficie de respuesta, obteniendo el mayor rendimiento con etanol al 90%, utilizando 50mL/g corteza y 150 minutos de operación. A estas condiciones, el rendimiento de extracción fue de 2208,53µg β-caroteno/100g muestra. Por último, se determinó la diferencia de color entre el extracto óptimo y una solución de tartrazina, evidenciando una diferencia de color de 3,07 unidades cieLAB, lo cual, muestra que el producto de lixiviación de la corteza de maracuyá tiene potencial para su uso como aditivo alimentario, reemplazando colorantes sintéticos, como la tartrazina. 
Tarazona-Díaz, Martha
Becerra, Nubia
Piedra, Johan
Beltrán, Richard
Passiflora edulis f. flavicarpa
extractor de Soxhlet
cáscara del maracuyá
extracción de carotenoides
diferencia de color
23
1
Artículo de revista
Núm. 1 , Año 2020 :Revista U.D.C.A Actualidad & Divulgación Científica. Enero-Junio
application/pdf
https://revistas.udca.edu.co/index.php/ruadc/article/view/1303
BARBOSA DE OLIVEIRA, A.; DE ALMEIDA LOPES, M.M.; HERBSTER MOURA, C.F.; DE SIQUEIRA OLIVEIRA, L.; OLIVEIRA DE SOUZA, K.; GOMES FILHO, E.; URBAN, L.; ALCÂNTARA DE MIRANDA, M. R. 2017. Effects of organic vs. conventional farming systems on quality and antioxidant metabolism of passion fruit during maturation. Scientia Horticulturae. 222:84-89. https://doi.org/10.1016/j.scienta.2017.05.021
ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS -AOAC-. 1995. 942.15 Acidity (Titratable) of fruit products. 16th ed Official methods of analysis of AOAC International.. AOAC International (Arlington).
AIBANA, O.; FRANKE, M.F.; HUANG, C.C.; GALEA, J.T.; CALDERON, R.; ZHANG, Z.; BECERRA, M.C.; SMITH, E.R.; RONNENBERG, A.G.; CONTRERAS, C.; YATACO, R.; LECCA, L.; MURRAY, M.B. 2017. Impact of Vitamin A and Carotenoids on the Risk of Tuberculosis Progression. Clin. Infect. Dis. 65(6):900-909. https://doi.org/10.1093/cid/cix476
Martha Tarazona Díaz, Nubia Becerra, Johan Piedra, Richard Beltrán - 2020
https://creativecommons.org/licenses/by-nc-sa/4.0/
Español
Publication
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
Revista U.D.C.A Actualidad & Divulgación Científica
color difference
Obtaining a dye from passion fruit cortex with the use of conventional extraction techniques
husk of passion fruit
Soxhlet extractor
Passiflora edulis f. flavicarpa
Passion fruit is a tropical fruit that is usually cultivated to obtain pulp, being the cortex its main not exploited by-product, because of the actual absence of industrial interest. However, with the aim of diversifying the derivates from the production of passion fruit products, it has been demonstrated that the cortex contains carotenoids, such as β-carotene and lutein; which could be used in food due to its antioxidant capacity, or even like a food colorant. Therefore, the objective of this work was to obtain a carotenoid-rich extract from its cortex; for this, three techniques of extraction with ethanol were evaluated, by immersion, thermostatic bath and Soxhlet. Being the last technique that one with which the best yield was obtained. With the highest yield technique, the following factors were evaluated: ethanol concentration on 80% and 90% v/v, solvent-raw material ratio on 40:1 and 50:1 and time on 90 and 150min. The best yield was obtaining to 90% ethanol, 50mL solvent/g raw material and 150min, for an extraction yield of 2208.53µg β-caroten/100 g sample. Finally, the color difference between the optimal extract and a tartrazine solution was determined, evidencing a color difference of 3.07cieLAB units; this shows that the passion fruit leaching product has the potential to be used as a food additive, replacing synthetic dyes such as tartrazine. 
Journal article
extraction of carotenoids
2020-06-30T00:00:00Z
2020-06-30T00:00:00Z
https://revistas.udca.edu.co/index.php/ruadc/article/download/1303/1896
https://doi.org/10.31910/rudca.v23.n1.2020.1303
https://revistas.udca.edu.co/index.php/ruadc/article/download/1303/1885
10.31910/rudca.v23.n1.2020.1303
0123-4226
2020-06-30
2619-2551
institution UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDECIENCIASAPLICADASYAMBIENTALES/logo.png
country_str Colombia
collection Revista U.D.C.A Actualidad & Divulgación Científica
title Obtención de un colorante a partir de corteza de maracuyá con el uso de técnicas convencionales de extracción
spellingShingle Obtención de un colorante a partir de corteza de maracuyá con el uso de técnicas convencionales de extracción
Tarazona-Díaz, Martha
Becerra, Nubia
Piedra, Johan
Beltrán, Richard
Passiflora edulis f. flavicarpa
extractor de Soxhlet
cáscara del maracuyá
extracción de carotenoides
diferencia de color
color difference
husk of passion fruit
Soxhlet extractor
Passiflora edulis f. flavicarpa
extraction of carotenoids
title_short Obtención de un colorante a partir de corteza de maracuyá con el uso de técnicas convencionales de extracción
title_full Obtención de un colorante a partir de corteza de maracuyá con el uso de técnicas convencionales de extracción
title_fullStr Obtención de un colorante a partir de corteza de maracuyá con el uso de técnicas convencionales de extracción
title_full_unstemmed Obtención de un colorante a partir de corteza de maracuyá con el uso de técnicas convencionales de extracción
title_sort obtención de un colorante a partir de corteza de maracuyá con el uso de técnicas convencionales de extracción
title_eng Obtaining a dye from passion fruit cortex with the use of conventional extraction techniques
description El maracuyá es un fruto tropical que se cultiva primordialmente para la obtención de pulpa, siendo la corteza su principal subproducto que carece, en la actualidad, de interés industrial; sin embargo, con el fin de diversificar los derivados provenientes de la producción de maracuyá, se ha demostrado que la corteza contiene carotenoides, dentro de los que se destaca el β-caroteno y la luteína, que podrían ser utilizados en alimentos, debido a su poder antioxidante e, incluso, como colorante natural alternativo. Por lo anterior, el objetivo de este trabajo fue obtener un extracto rico en carotenoides a partir de su corteza; para ello, se evaluó la extracción con etanol, mediante tres técnicas: inmersión, baño termostático y soxhlet. El mayor rendimiento, se obtuvo con el método soxhlet; para esta técnica, se estudió el efecto de la concentración de etanol (entre 80% y 90% v/v), la proporción solvente-materia prima (con relaciones entre 40:1 y 50:1) y el tiempo (definido entre 90 y 150 minutos). Los resultados, se analizaron mediante modelo de superficie de respuesta, obteniendo el mayor rendimiento con etanol al 90%, utilizando 50mL/g corteza y 150 minutos de operación. A estas condiciones, el rendimiento de extracción fue de 2208,53µg β-caroteno/100g muestra. Por último, se determinó la diferencia de color entre el extracto óptimo y una solución de tartrazina, evidenciando una diferencia de color de 3,07 unidades cieLAB, lo cual, muestra que el producto de lixiviación de la corteza de maracuyá tiene potencial para su uso como aditivo alimentario, reemplazando colorantes sintéticos, como la tartrazina. 
description_eng Passion fruit is a tropical fruit that is usually cultivated to obtain pulp, being the cortex its main not exploited by-product, because of the actual absence of industrial interest. However, with the aim of diversifying the derivates from the production of passion fruit products, it has been demonstrated that the cortex contains carotenoids, such as β-carotene and lutein; which could be used in food due to its antioxidant capacity, or even like a food colorant. Therefore, the objective of this work was to obtain a carotenoid-rich extract from its cortex; for this, three techniques of extraction with ethanol were evaluated, by immersion, thermostatic bath and Soxhlet. Being the last technique that one with which the best yield was obtained. With the highest yield technique, the following factors were evaluated: ethanol concentration on 80% and 90% v/v, solvent-raw material ratio on 40:1 and 50:1 and time on 90 and 150min. The best yield was obtaining to 90% ethanol, 50mL solvent/g raw material and 150min, for an extraction yield of 2208.53µg β-caroten/100 g sample. Finally, the color difference between the optimal extract and a tartrazine solution was determined, evidencing a color difference of 3.07cieLAB units; this shows that the passion fruit leaching product has the potential to be used as a food additive, replacing synthetic dyes such as tartrazine. 
author Tarazona-Díaz, Martha
Becerra, Nubia
Piedra, Johan
Beltrán, Richard
author_facet Tarazona-Díaz, Martha
Becerra, Nubia
Piedra, Johan
Beltrán, Richard
topicspa_str_mv Passiflora edulis f. flavicarpa
extractor de Soxhlet
cáscara del maracuyá
extracción de carotenoides
diferencia de color
topic Passiflora edulis f. flavicarpa
extractor de Soxhlet
cáscara del maracuyá
extracción de carotenoides
diferencia de color
color difference
husk of passion fruit
Soxhlet extractor
Passiflora edulis f. flavicarpa
extraction of carotenoids
topic_facet Passiflora edulis f. flavicarpa
extractor de Soxhlet
cáscara del maracuyá
extracción de carotenoides
diferencia de color
color difference
husk of passion fruit
Soxhlet extractor
Passiflora edulis f. flavicarpa
extraction of carotenoids
citationvolume 23
citationissue 1
citationedition Núm. 1 , Año 2020 :Revista U.D.C.A Actualidad & Divulgación Científica. Enero-Junio
publisher Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
ispartofjournal Revista U.D.C.A Actualidad & Divulgación Científica
source https://revistas.udca.edu.co/index.php/ruadc/article/view/1303
language Español
format Article
rights http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
Martha Tarazona Díaz, Nubia Becerra, Johan Piedra, Richard Beltrán - 2020
https://creativecommons.org/licenses/by-nc-sa/4.0/
references HERRERA-RAMIREZ, J.; MENESES-MARENTES, N.; TARAZONA-DÍAZ, M.P. 2019. Optimizing the extraction of anthocyanins from purple passion fruit peel using response surface methodology. J. Food Meas. Charact. https://doi.org/10.1007/s11694-019-00280-8
MOJICA, L.; BERHOW, M.; GONZALEZ DE MEJIA, E. 2017. Black bean anthocyanin-rich extracts as food colorants: Physicochemical stability and antidiabetes potential. Food Chem. 229:628-639. https://doi.org/10.1016/j.foodchem.2017.02.124
MCCANN, D.; BARRETT, A.; COOPER, A.; CRUMPLER, D.; DALEN, L.; GRIMSHAW, K.; KITCHIN, E.; LOK, K.; PORTEOUS, L.; PRINCE, E.; SONUGA-BARKE, E.; WARNER, J.O.; STEVENSON, J. 2007. Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: a randomised, double-blinded, placebo-controlled trial. Lancet 370(9598):1560-1567. https://doi.org/10.1016/S0140-6736(07)61306-3
LEÃO, K.M.M.; SAMPAIO, K.L.; PAGANI, A.A.C.; DA SILVA, M.A.A.P. 2014. Odor potency, aroma profile and volatiles composition of cold pressed oil from industrial passion fruit residues. Ind. Crop. Prod. 58:280-286. https://doi.org/10.1016/j.indcrop.2014.04.032
KULKARNI, S.G.; VIJAYANAND, P. 2010. Effect of extraction conditions on the quality characteristics of pectin from passion fruit peel (Passiflora edulis f. flavicarpa L.). LWT-Food Sci. Technol. 43(7):1026-1031. https://doi.org/10.1016/j.lwt.2009.11.006
KIM, B.; PARK, B. 2018. Saffron carotenoids inhibit STAT3 activation and promote apoptotic progression in IL-6-stimulated liver cancer cells. Oncol. Rep. 39(4):1883-1891. https://doi.org/10.3892/or.2018.6232
KHAZAEI, K.M.; JAFARI, S.M.; GHORBANI, M.; KAKHKI, A.H.; SARFARAZI, M. 2016. Optimization of Anthocyanin Extraction from Saffron Petals with Response Surface Methodology. Food Anal. Methods. 9(7):1993-2001. https://doi.org/10.1007/s12161-015-0375-4
JUÁREZ, M.C.; ECHÁVARRI, J.F.; NEGUERUELA, A.I. 1997. A proposal for a method to measure the colour of red wines by measuring transmittance at three wavelengths. Food Sci. Technol. Int. 3(3):189-193. https://doi.org/10.1177/108201329700300306
HERNÁNDEZ-SANTOS, B.; DE LOS ÁNGELES VIVAR-VERA, M.; RODRÍGUEZ-MIRANDA, J.; HERMAN-LARA, E.; TORRUCO-UCO, J.G.; ACEVEDO-VENDRELL, O.; MARTÍNEZ-SÁNCHEZ, C.E. 2015. Dietary fibre and antioxidant compounds in passion fruit (Passiflora edulis f. flavicarpa) peel and depectinised peel waste. Int. J. Food Sci. Technol. 50(1):268-274. https://doi.org/10.1111/ijfs.12647
NAGATA, M.; YAMASHITA, I. 1992. Simple Method for Simultaneous Determination of Chlorophyll and Carotenoids in Tomato Fruit. J. Japan Soc. Food Sci. 39(10):925-928. https://doi.org/10.3136/nskkk1962.39.925
GU, Z.; DEMING, C.; YONGBIN, H.; ZHIGANG, C.; FEIRONG, G. 2008. Optimization of carotenoids extraction from Rhodobacter sphaeroides. LWT-Food Sci. Technol. 41(6):1082-1088. https://doi.org/10.1016/j.lwt.2007.07.005
ELIK, A.; YANIK, D.K.; GÖĞÜŞ, F. 2020. Microwave-assisted extraction of carotenoids from carrot juice processing waste using flaxseed oil as a solvent. LWT-Food Sci. Technol. 123:109100. https://doi.org/10.1016/j.lwt.2020.109100
DOS REIS, L.C.R.; FACCO, E.M.P.; SALVADOR, M.; FLÔRES, S.H.; DE OLIVEIRA RIOS, A. 2018. Antioxidant potential and physicochemical characterization of yellow, purple and orange passion fruit. J. Food Sci. echnol. 55(7):2679-2691. https://doi.org/10.1007/s13197-018-3190-2
DO ESPÍRITO SANTO, A.P.; PEREGO, P.; CONVERTI, A.; OLIVEIRA, M. N. 2012. Influence of milk type and addition of passion fruit peel powder on fermentation kinetics, texture profile and bacterial viability in probiotic yoghurts. LWT-Food Sci. Technol. 47(2):393-399. https://doi.org/10.1016/j.lwt.2012.01.038
DE OLIVEIRA, G.A.; DE CASTILHOS, F.; RENARD, C.M.-G.; BUREAU, S. 2014. Comparison of NIR and MIR spectroscopic methods for determination of individual sugars, organic acids and carotenoids in passion fruit. Food Res. Int. 60:154-162. https://doi.org/10.1016/j.foodres.2013.10.051
DE OLIVEIRA, C.F.; GIORDANI, D.; GURAK, P.D.; CLADERA-OLIVERA, F.; MARCZAK, L.D.F. 2015. Extraction of pectin from passion fruit peel using moderate electric field and conventional heating extraction methods. Innov. Food Sci. Emerg. Technol. 29:201-208. https://doi.org/10.1016/j.ifset.2015.02.005
DE ANDRADE, M.; CHARALAMPOPOULOS, D.; CHATZIFRAGKOU, A. 2018. Optimisation and modelling of supercritical CO2 extraction process of carotenoids from carrot peels. J. Supercrit. Fluid. 133:94-102. https://doi.org/10.1016/j.supflu.2017.09.028
BRENNAN, J.G.; GRANDISON, A.S.; LEWIS, M.J. 2006. Separations in food processing. En: Brennan J.G. (Ed.). Food Processing Handbook. 3st Ed. Wiley-vch verlag GmbH & Co. KGaA (Weinheim). p.455-464.
MYERS, R.H.; MONTGOMERY, D.C. 2002. Building Empirical Model. En: Myers R.H.; Montgomery, D.C. (Eds.). Response Surface Methodology Process and Product Optimization Using Designed Experiments. 2nd Ed. Wiley-Interscience (New York). p.17-74.
NASCIMENTO, T.A.; CALADO, V.; CARVALHO, C.W.P. 2012. Development and characterization of flexible film based on starch and passion fruit mesocarp flour with nanoparticles. Food Res. Int. 49(1):588-595. https://doi.org/10.1016/j.foodres.2012.07.051
BENMEZIANE, A.; BOULEKBACHE-MAKHLOUF, L.; MAPELLI-BRAHM, P.; KHALED KHODJA, N.; REMINI, H.; MADANI, K.; MELÉNDEZ-MARTÍNEZ, A.J. 2018, Extraction of carotenoids from cantaloupe waste and determination of its mineral composition. Food Res. Int. 111:391-398. https://doi.org/10.1016/j.foodres.2018.05.044
WU, J.; CHO, E.; WILLETT, W.C.; SASTRY, S.M.; SCHAUMBERG, D.A. 2015. Intakes of lutein, zeaxanthin, and other carotenoids and age-related macular degeneration during 2 decades of prospective follow-up. JAMA Ophthalmol. 133(12):1415-1424. https://doi.org/10.1001/jamaophthalmol.2015.3590
RODRIGUEZ-AMAYA, D.B. 2012. Passion Fruit. En: Siddiq, M. (Ed.). Tropical and Subtropical Fruits: Postharvest, Physiology, Processing and Packaging. Ed. Wiley-Blackwell (Oxford). p.324-329. https://doi.org/10.1002/9781118324097
WIJERATNAM, S.W. 2016. Passion Fruit. En: Caballero, B.; Finglas, P.M.; Toldrá, F. (Eds.). Encyclopedia of Food and Health. Ed. Elsevier (Oxford). p.230-234. https://doi.org/10.1016/b978-0-12-384947-2.00521-3
VIANNA-SILVA, T.; LIMA, R.V.; DE AZEVEDO, I.G.; ROSA, R.C.C.; DE SOUZA, M.S.; DE OLIVEIRA, J.G. 2010. Determinação da maturidade fisiológica de frutos de maracujazeiro-amarelo colhidos na região norte do estado do Rio de Janeiro, Brasil. Rev. Bras. Frutic. 32(1):57-66. https://doi.org/10.1590/s0100-29452010005000012
TARAZONA-DÍAZ, M.P.; AGUAYO, E. 2013. Influence of acidification, pasteurization, centrifugation and storage time and temperature on watermelon juice quality. J. Sci Food Agric. 93(15):3863-3869. https://doi.org/10.1002/jsfa.6332
SIGURDSON, G.T.; TANG, P.; GIUSTI, M.M. 2017. Natural colorants: food colorants from natural sources. Annu. Rev. Food Sci. Technol. 8(1):261-280. https://doi.org/10.1146/annurev-food-030216-025923
SANTOS, E.; ANDRADE, R.; GOUVEIA, E. 2017. Utilization of the pectin and pulp of the passion fruit from Caatinga as probiotic food carriers. Food Biosci. 20:56-61. https://doi.org/10.1016/j.fbio.2017.08.005
SÁNCHEZ-CAMARGO, A. DEL P.; GUTIÉRREZ, L.F.; VARGAS, S.M.; MARTINEZ-CORREA, H.A.; PARADA-ALFONSO, F.; NARVÁEZ-CUENCA, C.E. 2019. Valorisation of mango peel: Proximate composition, supercritical fluid extraction of carotenoids, and application as an antioxidant additive for an edible oil. J. Supercrit. Fluid. 152:104574. https://doi.org/10.1016/j.supflu.2019.104574
SAINI, R.K.; KEUM, Y.-S. 2018. Carotenoid extraction methods: A review of recent developments. Food Chem. 240:90-103. https://doi.org/10.1016/j.foodchem.2017.07.099
SAHIN, S.; SUMMU, S.G. 2009. Propiedades elecromagnéticas. En: Sahin, S.; Summu, S. (Eds.). Propiedades físicas de los alimentos. Ed. Acribia S.A. (Zaragoza). p.190-203.
BHATT, D.; VYAS, K.; SINGH, S.; JOHN, P.J.; SONI, I. 2018. Tartrazine induced neurobiochemical alterations in rat brain sub-regions. Food Chem. Toxicol. 113:322-327. https://doi.org/10.1016/j.fct.2018.02.011
BETIM CAZARIN, C.B.; DA SILVA, J.K.; COLOMEU, T.C.; DE LIMA ZOLLNER, R.; MARÓSTICA JUNIOR, M.R. 2014. Capacidade antioxidante e composição química da casca de maracujá (Passiflora edulis). Cienc. Rural 44(9):1699-1704. https://doi.org/10.1590/0103-8478cr20131437
BATADA, A.; JACOBSON, M.F. 2016. Prevalence of Artificial Food Colors in Grocery Store Products Marketed to Children. Clin. Pediat. 55(12):1113-1119. https://doi.org/10.1177/0009922816651621
BARBOSA DE OLIVEIRA, A.; DE ALMEIDA LOPES, M.M.; HERBSTER MOURA, C.F.; DE SIQUEIRA OLIVEIRA, L.; OLIVEIRA DE SOUZA, K.; GOMES FILHO, E.; URBAN, L.; ALCÂNTARA DE MIRANDA, M. R. 2017. Effects of organic vs. conventional farming systems on quality and antioxidant metabolism of passion fruit during maturation. Scientia Horticulturae. 222:84-89. https://doi.org/10.1016/j.scienta.2017.05.021
ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS -AOAC-. 1995. 942.15 Acidity (Titratable) of fruit products. 16th ed Official methods of analysis of AOAC International.. AOAC International (Arlington).
AIBANA, O.; FRANKE, M.F.; HUANG, C.C.; GALEA, J.T.; CALDERON, R.; ZHANG, Z.; BECERRA, M.C.; SMITH, E.R.; RONNENBERG, A.G.; CONTRERAS, C.; YATACO, R.; LECCA, L.; MURRAY, M.B. 2017. Impact of Vitamin A and Carotenoids on the Risk of Tuberculosis Progression. Clin. Infect. Dis. 65(6):900-909. https://doi.org/10.1093/cid/cix476
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_1843
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2020-06-30
date_accessioned 2020-06-30T00:00:00Z
date_available 2020-06-30T00:00:00Z
url https://revistas.udca.edu.co/index.php/ruadc/article/view/1303
url_doi https://doi.org/10.31910/rudca.v23.n1.2020.1303
issn 0123-4226
eissn 2619-2551
doi 10.31910/rudca.v23.n1.2020.1303
url2_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/download/1303/1896
url4_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/download/1303/1885
_version_ 1797159747143598080