Efecto de un fosfato térmico sobre el crecimiento y producción de fríjol (Phaseolus vulgaris L.) cv Ica cerinza

El fríjol es la leguminosa más importante del mundo por su aporte a la seguridad alimentaria y por el alto contenido de proteínas y de minerales esenciales. En américa latina y especialmente en Colombia, el cultivo de fríjol es importante en la economía campesina, pero, en la actualidad, la producción no satisface la demanda, haciendo necesario importar este producto. En la zona ecuatorial y subecuatorial, los suelos, en su mayoría, presentan condiciones ácidas, que conlleva a una baja fertilidad y limitación en la toma de elementos, como el fósforo. Por esto, el uso de fuentes de fósforo no convencionales representa una alternativa en la disponibilidad de este elemento, que mejore la dinámica nutricional y así generar un buen crecimiento y... Ver más

Guardado en:

0123-4226

2619-2551

20

2017-06-30

51

59

http://purl.org/coar/access_right/c_abf2

info:eu-repo/semantics/openAccess

id 1f1630b7cc74ec2a73b12b0809729a16
record_format ojs
spelling Efecto de un fosfato térmico sobre el crecimiento y producción de fríjol (Phaseolus vulgaris L.) cv Ica cerinza
FERNÁNDEZ, M. 2007. Fósforo: amigo o enemigo. ICIDCA. Sobre los derivados de la caña de azúcar. 41(2):51-57.
MEDINA, G.; OROZCO, M.; BOLÍVAR, J.; RAMÍREZ, P. 1999. Acumulación y concentración de nitrógeno, fósforo y potasio en Gypsophila paniculata L. cv. Perfecta. Agron. Colomb. 16(1-3):46-50.
MARSCHNER, P. 2012. Mineral nutrition of higher plants. 3rd. Ed. Elsevier. Oxford, UK. 645p.
HERNÁNDEZ, G.; TOSCANO, V.; MÉNDEZ, N.; GÓMEZ, L.; MULLINGS, M. 1996. Efecto de la concentración de fósforo sobre su asimilación en tres genotipos de fríjol común (Phaseolus vulgaris L.). Agron. Mesoam. 7(1):80-85.
HARUNA, I.; ALIYU, L. 2011. Yield and economic returns of sesame (Sesamum indicum L.) as influenced by poultry manure, nitrogen and phosphorus at Samaru, Nigeria. Elixir Agric. 39:4884-4887.
HARUNA, I. 2011. Dry matter partititioning and grain yield potential in sesame (Sesamum indicum L.) as influenced by poultry manure, nitrogen and phosphorus at Samaru, Nigeria. J. Agric.Technol. 7:1571-1577.
GILBERT, N. 2009. The disappearing nutrient. Nature.461:716-718.
FERNÁNDEZ, S.; NOGUERA, R. 2003. Producción de fosfatos térmicos a partir de rocas fosfóricas nacionales. Agr. Trop. 53(1):49-58.
FENALCE. 2015. Federación Nacional de Cultivadores de Cereales y Leguminosas. Departamento económico y apoyo a la comercialización. Indicadores cerealistas. Bogotá D.C. 102p.
MÚNERA, G.; MEZA, D. 2012. El fósforo elemento indispensable para la vida vegetal. Manual. Universidad Tecnológica de Pereira. 52p.
FAGERIA, N.K.; BALIGAR, V.C.; MOREIRA, A.; PORTES, T. 2010. Dry bean genotypes evaluation for growth, yield components and phosphorus use efficiency. J. Plant Nutr. 33:2167-2181.
DATNOFF, L.; RODRIGUES, F.; SEEBOLD K. 2007. Silicon and Plant Disease. En: Mineral Nutrition and Plant Disease: The American Phytopathological Society. p.233-246.
CORDELL, D.; DRANGERT, J.; WHITE, S. 2009. The story of phosphorus: global food security and food for thought. Global Environ Change. 19:292-305.
CASTRO, H. 1998. Fundamentos para el conocimiento y manejo de suelos agrícolas: Manual técnico. Instituto Universitario Juan de Castellanos. 360p.
CAKMAK, I; KIRKBY, E.A. 2008. Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiol. Plant. 133:692-704.
CAKMAK, I.; HENGELER, C.; MARSCHNER, H. 1994. Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J. Exp. Bot. 45:1245-1250.
BROUGHTON, W.; HERNANDEZ, G.; BLAIR, M.; BEEBE, S.; GEPTS, P.; VANDERLEYDEN, J. 2003. Beans (Phaseolus spp.) – model food legumes. Plant and Soil. 252:55–128.
MORALES, E.; ESCALANTE, J.; LÓPEZ, J. 2007. Producción de biomasa y rendimiento de semilla en la asociación girasol (Helianthus annuus L.) fríjol (Phaseolus vulgaris L.) en función del nitrógeno y fósforo. Ciencia Ergo Sum. 14(2):177-183.
NKAA, F.A.; NWOKEOCHA, O.; IHUOMA, O. 2014. Effect of phosphorus fertilizer on growth and yield of cowpea (Vigna unguiculata). J. Pharmacy Biological Sc. 9(5):74-82.
ARIAS, J.H.; JARAMILLO, M.; RENGIFO, T. 2007. Manual Técnico: Buenas Prácticas Agrícolas (BPA) en la producción de fríjol voluble. CORPOICA – MANA – FAO. C.I. La Selva. Medellín. 168p.
info:eu-repo/semantics/article
Text
http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_1843
http://purl.org/coar/resource_type/c_6501
ZAPATA, E.; ROY, R. 2007. Utilización de las rocas fosfóricas para una agricultura sostenible. Boletín FAO. Fertilizantes y nutrición vegetal 13. Roma. 177p.
OKELEYE, K.A.; OKELANA, M. 2000. Effect of phosphorus fertilizer on nodulation, growth, and yield of cowpea (Vigna unguiculata) varieties. Indian J. of Agric. Sci. 67(1):10-12.
ULLOA, J.A.; ROSAS ULLOA, P.; RAMÍREZ, J.C.; ULLOA, B.E. 2011. El fríjol (Phaseolus vulgaris): su importancia nutricional y como fuente de fitoquímicos. Rev. Fuente Año 3(8):5-9.
TAIZ, L; ZEIGER, E. 2010. Plant Physiology. 5th Ed. Sinauer Associates, Sunderland. 782p.
SINGH, S.K.; BADGUJAR, G.B.; REDDY, V.R.; FLEISHER, D.H.; TIMLIN, D.J. 2013. Effect of phosphorus nutrition on growth and physiology of cotton under ambient and elevated carbon dioxide. J. Agron. Crop Sci. 199:436-448.
SINGH, S.K.; REDDY, V.R. 2015. Response of carbon assimilation and chlorophyll fluorescence to soybean leaf phosphorus across CO2: Alternative electron sink, nutrient efficiency and critical concentration. J. Photochem. Photobiol. B: Biology.151:276-284.
SHEKARI, F.; ABBASI, A.; MUSTAFAVI, S. 2015. Effect of silicon and selenium on enzymatic changes and productivity of dill in saline condition. J. Saudi Soc. Agr. Sc. Corrected Proof. In Press. http://dx.doi.org/10.1016/j.jssas.2015.11.006.
ROJAS, M. 1993. Fisiología vegetal aplicada. Interamericana. Mc Graw Hill. México. 275p.
PINEDA-MARES, P.; MARTÍNEZ-MONTOYA, J.; AMANTE-OROZCO, A.; RUIZ-VERA, V. 2001. Respuesta del maíz al fósforo y un mejorador de suelos en áreas yesosas de la zona media de San Luis de Potosí. Rev. Chapingo Serie zonas áridas. p.106-113.
BEEBE, S.; RAO, I.; CAJIAO, C.; GRAJALES, M. 2008. Selection for drought resistance in common bean also improves yield in phosphorus limited and favorable environments. Crop Sci. 48:582-592.
AZCÓN-BIETO, J.; TALÓN, M. 2013. Fundamentos de fisiología vegetal. 2a ed. Mc Graw Hill. Universidad de Barcelona. España. 656p.
APÁEZ, P.; ESCALANTE, J.; RAMÍREZ, P.; DOUGLAS, S.; SOSA, E.; OLALDE, V. 2013. Eficiencia agronómica de nitrógeno y fósforo en la producción de fríjol chino en espaldera de maíz. Terra Latinoamericana. 31(4):285-293.
text/html
El fríjol es la leguminosa más importante del mundo por su aporte a la seguridad alimentaria y por el alto contenido de proteínas y de minerales esenciales. En américa latina y especialmente en Colombia, el cultivo de fríjol es importante en la economía campesina, pero, en la actualidad, la producción no satisface la demanda, haciendo necesario importar este producto. En la zona ecuatorial y subecuatorial, los suelos, en su mayoría, presentan condiciones ácidas, que conlleva a una baja fertilidad y limitación en la toma de elementos, como el fósforo. Por esto, el uso de fuentes de fósforo no convencionales representa una alternativa en la disponibilidad de este elemento, que mejore la dinámica nutricional y así generar un buen crecimiento y producción de los cultivos. El objetivo de esta investigación fue evaluar el efecto de un fosfato térmico sobre el crecimiento y el rendimiento del cultivar de fríjol ‘ICA Cerinza’, bajo condiciones agroecológicas, del municipio de Tunja-Boyacá. Se empleó un diseño completamente al azar, con cuatro tratamientos correspondientes a dosis de fosfato térmico 0, 300, 600 y 900kg ha-1, con cuatro replicaciones. Se evaluó el contenido total de clorofila, área foliar, peso seco de órganos, numero de vainas por planta y granos por vaina, peso de cien granos, rendimiento y contenido foliar de fósforo. Se presentaron diferencias estadísticas entre tratamientos (P≤0,05), para las variables de crecimiento y el número de vainas por planta. Laaplicación de 600kg ha-1 de fosfato térmico mostró los mejores resultados, posiblemente, debido a las características del producto, tales como solubilidad y composición, siendo una alternativa en suelos de condiciones moderadamente ácidas.  
Quintana Blanco, Wilmer Alejandro
Pinzón Sandoval, Elberth Hernando
Torres, David Fernando
Fósforo
acidez intercambiable
fosfato térmico
nutrición mineral
20
1
Núm. 1 , Año 2017 :Revista U.D.C.A Actualidad & Divulgación Científica. Enero - Junio
application/pdf
Artículo de revista
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
https://revistas.udca.edu.co/index.php/ruadc/article/view/62
ADATIA, M.; BESFORD, R. 1986. The effects of silicon on cucumber plants grown in recirculating nutrient solution. Ann. Bot. 58:343-351.
ABAYOMI, Y.A.; AJIBADE, T.; SAMMUEL, O.; SAADUDEEN, B. 2008. Growth and yield responses of cowpea (Vigna unguiculata L.) genotypes to nitrogen fertilizer (NPK) application in the Southern Guinea Savanna zone of Nigeria. Asian J. Plant Sci. 7:170-176.
https://creativecommons.org/licenses/by-nc-sa/4.0/
Español
Revista U.D.C.A Actualidad & Divulgación Científica
Publication
legume
mineral nutrition
thermal phosphate
exchangeable acidity
Effect of thermal phosphate on growth and production of common bean (Phaseolus vulgaris l.) cv 'Ica cerinza'
Phosphorus
The common bean is the world's most important legume for their contribution to food security. In Latin America and especially in Colombia, the bean crop is important in the rural economy, but currently the production does not meet demand, necessitating import this product. In tropical and subtropical soils areas mostly present conditions exchangeable acidity, it leads to low fertility and limitation in making elements such as phosphorus, so the use of unconventional sources of phosphorus, may represent an alternative in the availability of this element that improves the nutritional dynamics and generate good growth and crop production. Therefore, the objective of this research was to evaluate the effect of a thermal phosphate on growth and productivity of bean cv. 'ICA Cerinza' under agro-ecological conditions of the municipality of Tunja-Boyacá. Design was used completely randomized with four treatments corresponding to doses of thermal phosphate 0, 300, 600 and 900kg ha-1 with four replications. The total chlorophyll content, leaf area, dry weight of organs, yield components and leaf phosphorus content was evaluated. Statistical differences between treatments (P≤0.05) for growth variables and the number of pods per plant were presented. Applying 600kg thermal phosphate ha-1 showed the best results, possibly because the product characteristics such as solubility and composition, being an alternative flooring moderately acidic conditions.
Journal article
51
2017-06-30
2017-06-30T00:00:00Z
59
2619-2551
2017-06-30T00:00:00Z
https://doi.org/10.31910/rudca.v20.n1.2017.62
0123-4226
https://revistas.udca.edu.co/index.php/ruadc/article/download/62/32
10.31910/rudca.v20.n1.2017.62
https://revistas.udca.edu.co/index.php/ruadc/article/download/62/1363
institution UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDECIENCIASAPLICADASYAMBIENTALES/logo.png
country_str Colombia
collection Revista U.D.C.A Actualidad & Divulgación Científica
title Efecto de un fosfato térmico sobre el crecimiento y producción de fríjol (Phaseolus vulgaris L.) cv Ica cerinza
spellingShingle Efecto de un fosfato térmico sobre el crecimiento y producción de fríjol (Phaseolus vulgaris L.) cv Ica cerinza
Quintana Blanco, Wilmer Alejandro
Pinzón Sandoval, Elberth Hernando
Torres, David Fernando
Fósforo
acidez intercambiable
fosfato térmico
nutrición mineral
legume
mineral nutrition
thermal phosphate
exchangeable acidity
Phosphorus
title_short Efecto de un fosfato térmico sobre el crecimiento y producción de fríjol (Phaseolus vulgaris L.) cv Ica cerinza
title_full Efecto de un fosfato térmico sobre el crecimiento y producción de fríjol (Phaseolus vulgaris L.) cv Ica cerinza
title_fullStr Efecto de un fosfato térmico sobre el crecimiento y producción de fríjol (Phaseolus vulgaris L.) cv Ica cerinza
title_full_unstemmed Efecto de un fosfato térmico sobre el crecimiento y producción de fríjol (Phaseolus vulgaris L.) cv Ica cerinza
title_sort efecto de un fosfato térmico sobre el crecimiento y producción de fríjol (phaseolus vulgaris l.) cv ica cerinza
title_eng Effect of thermal phosphate on growth and production of common bean (Phaseolus vulgaris l.) cv 'Ica cerinza'
description El fríjol es la leguminosa más importante del mundo por su aporte a la seguridad alimentaria y por el alto contenido de proteínas y de minerales esenciales. En américa latina y especialmente en Colombia, el cultivo de fríjol es importante en la economía campesina, pero, en la actualidad, la producción no satisface la demanda, haciendo necesario importar este producto. En la zona ecuatorial y subecuatorial, los suelos, en su mayoría, presentan condiciones ácidas, que conlleva a una baja fertilidad y limitación en la toma de elementos, como el fósforo. Por esto, el uso de fuentes de fósforo no convencionales representa una alternativa en la disponibilidad de este elemento, que mejore la dinámica nutricional y así generar un buen crecimiento y producción de los cultivos. El objetivo de esta investigación fue evaluar el efecto de un fosfato térmico sobre el crecimiento y el rendimiento del cultivar de fríjol ‘ICA Cerinza’, bajo condiciones agroecológicas, del municipio de Tunja-Boyacá. Se empleó un diseño completamente al azar, con cuatro tratamientos correspondientes a dosis de fosfato térmico 0, 300, 600 y 900kg ha-1, con cuatro replicaciones. Se evaluó el contenido total de clorofila, área foliar, peso seco de órganos, numero de vainas por planta y granos por vaina, peso de cien granos, rendimiento y contenido foliar de fósforo. Se presentaron diferencias estadísticas entre tratamientos (P≤0,05), para las variables de crecimiento y el número de vainas por planta. Laaplicación de 600kg ha-1 de fosfato térmico mostró los mejores resultados, posiblemente, debido a las características del producto, tales como solubilidad y composición, siendo una alternativa en suelos de condiciones moderadamente ácidas.  
description_eng The common bean is the world's most important legume for their contribution to food security. In Latin America and especially in Colombia, the bean crop is important in the rural economy, but currently the production does not meet demand, necessitating import this product. In tropical and subtropical soils areas mostly present conditions exchangeable acidity, it leads to low fertility and limitation in making elements such as phosphorus, so the use of unconventional sources of phosphorus, may represent an alternative in the availability of this element that improves the nutritional dynamics and generate good growth and crop production. Therefore, the objective of this research was to evaluate the effect of a thermal phosphate on growth and productivity of bean cv. 'ICA Cerinza' under agro-ecological conditions of the municipality of Tunja-Boyacá. Design was used completely randomized with four treatments corresponding to doses of thermal phosphate 0, 300, 600 and 900kg ha-1 with four replications. The total chlorophyll content, leaf area, dry weight of organs, yield components and leaf phosphorus content was evaluated. Statistical differences between treatments (P≤0.05) for growth variables and the number of pods per plant were presented. Applying 600kg thermal phosphate ha-1 showed the best results, possibly because the product characteristics such as solubility and composition, being an alternative flooring moderately acidic conditions.
author Quintana Blanco, Wilmer Alejandro
Pinzón Sandoval, Elberth Hernando
Torres, David Fernando
author_facet Quintana Blanco, Wilmer Alejandro
Pinzón Sandoval, Elberth Hernando
Torres, David Fernando
topicspa_str_mv Fósforo
acidez intercambiable
fosfato térmico
nutrición mineral
topic Fósforo
acidez intercambiable
fosfato térmico
nutrición mineral
legume
mineral nutrition
thermal phosphate
exchangeable acidity
Phosphorus
topic_facet Fósforo
acidez intercambiable
fosfato térmico
nutrición mineral
legume
mineral nutrition
thermal phosphate
exchangeable acidity
Phosphorus
citationvolume 20
citationissue 1
citationedition Núm. 1 , Año 2017 :Revista U.D.C.A Actualidad & Divulgación Científica. Enero - Junio
publisher Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
ispartofjournal Revista U.D.C.A Actualidad & Divulgación Científica
source https://revistas.udca.edu.co/index.php/ruadc/article/view/62
language Español
format Article
rights http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/4.0/
references FERNÁNDEZ, M. 2007. Fósforo: amigo o enemigo. ICIDCA. Sobre los derivados de la caña de azúcar. 41(2):51-57.
MEDINA, G.; OROZCO, M.; BOLÍVAR, J.; RAMÍREZ, P. 1999. Acumulación y concentración de nitrógeno, fósforo y potasio en Gypsophila paniculata L. cv. Perfecta. Agron. Colomb. 16(1-3):46-50.
MARSCHNER, P. 2012. Mineral nutrition of higher plants. 3rd. Ed. Elsevier. Oxford, UK. 645p.
HERNÁNDEZ, G.; TOSCANO, V.; MÉNDEZ, N.; GÓMEZ, L.; MULLINGS, M. 1996. Efecto de la concentración de fósforo sobre su asimilación en tres genotipos de fríjol común (Phaseolus vulgaris L.). Agron. Mesoam. 7(1):80-85.
HARUNA, I.; ALIYU, L. 2011. Yield and economic returns of sesame (Sesamum indicum L.) as influenced by poultry manure, nitrogen and phosphorus at Samaru, Nigeria. Elixir Agric. 39:4884-4887.
HARUNA, I. 2011. Dry matter partititioning and grain yield potential in sesame (Sesamum indicum L.) as influenced by poultry manure, nitrogen and phosphorus at Samaru, Nigeria. J. Agric.Technol. 7:1571-1577.
GILBERT, N. 2009. The disappearing nutrient. Nature.461:716-718.
FERNÁNDEZ, S.; NOGUERA, R. 2003. Producción de fosfatos térmicos a partir de rocas fosfóricas nacionales. Agr. Trop. 53(1):49-58.
FENALCE. 2015. Federación Nacional de Cultivadores de Cereales y Leguminosas. Departamento económico y apoyo a la comercialización. Indicadores cerealistas. Bogotá D.C. 102p.
MÚNERA, G.; MEZA, D. 2012. El fósforo elemento indispensable para la vida vegetal. Manual. Universidad Tecnológica de Pereira. 52p.
FAGERIA, N.K.; BALIGAR, V.C.; MOREIRA, A.; PORTES, T. 2010. Dry bean genotypes evaluation for growth, yield components and phosphorus use efficiency. J. Plant Nutr. 33:2167-2181.
DATNOFF, L.; RODRIGUES, F.; SEEBOLD K. 2007. Silicon and Plant Disease. En: Mineral Nutrition and Plant Disease: The American Phytopathological Society. p.233-246.
CORDELL, D.; DRANGERT, J.; WHITE, S. 2009. The story of phosphorus: global food security and food for thought. Global Environ Change. 19:292-305.
CASTRO, H. 1998. Fundamentos para el conocimiento y manejo de suelos agrícolas: Manual técnico. Instituto Universitario Juan de Castellanos. 360p.
CAKMAK, I; KIRKBY, E.A. 2008. Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiol. Plant. 133:692-704.
CAKMAK, I.; HENGELER, C.; MARSCHNER, H. 1994. Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J. Exp. Bot. 45:1245-1250.
BROUGHTON, W.; HERNANDEZ, G.; BLAIR, M.; BEEBE, S.; GEPTS, P.; VANDERLEYDEN, J. 2003. Beans (Phaseolus spp.) – model food legumes. Plant and Soil. 252:55–128.
MORALES, E.; ESCALANTE, J.; LÓPEZ, J. 2007. Producción de biomasa y rendimiento de semilla en la asociación girasol (Helianthus annuus L.) fríjol (Phaseolus vulgaris L.) en función del nitrógeno y fósforo. Ciencia Ergo Sum. 14(2):177-183.
NKAA, F.A.; NWOKEOCHA, O.; IHUOMA, O. 2014. Effect of phosphorus fertilizer on growth and yield of cowpea (Vigna unguiculata). J. Pharmacy Biological Sc. 9(5):74-82.
ARIAS, J.H.; JARAMILLO, M.; RENGIFO, T. 2007. Manual Técnico: Buenas Prácticas Agrícolas (BPA) en la producción de fríjol voluble. CORPOICA – MANA – FAO. C.I. La Selva. Medellín. 168p.
ZAPATA, E.; ROY, R. 2007. Utilización de las rocas fosfóricas para una agricultura sostenible. Boletín FAO. Fertilizantes y nutrición vegetal 13. Roma. 177p.
OKELEYE, K.A.; OKELANA, M. 2000. Effect of phosphorus fertilizer on nodulation, growth, and yield of cowpea (Vigna unguiculata) varieties. Indian J. of Agric. Sci. 67(1):10-12.
ULLOA, J.A.; ROSAS ULLOA, P.; RAMÍREZ, J.C.; ULLOA, B.E. 2011. El fríjol (Phaseolus vulgaris): su importancia nutricional y como fuente de fitoquímicos. Rev. Fuente Año 3(8):5-9.
TAIZ, L; ZEIGER, E. 2010. Plant Physiology. 5th Ed. Sinauer Associates, Sunderland. 782p.
SINGH, S.K.; BADGUJAR, G.B.; REDDY, V.R.; FLEISHER, D.H.; TIMLIN, D.J. 2013. Effect of phosphorus nutrition on growth and physiology of cotton under ambient and elevated carbon dioxide. J. Agron. Crop Sci. 199:436-448.
SINGH, S.K.; REDDY, V.R. 2015. Response of carbon assimilation and chlorophyll fluorescence to soybean leaf phosphorus across CO2: Alternative electron sink, nutrient efficiency and critical concentration. J. Photochem. Photobiol. B: Biology.151:276-284.
SHEKARI, F.; ABBASI, A.; MUSTAFAVI, S. 2015. Effect of silicon and selenium on enzymatic changes and productivity of dill in saline condition. J. Saudi Soc. Agr. Sc. Corrected Proof. In Press. http://dx.doi.org/10.1016/j.jssas.2015.11.006.
ROJAS, M. 1993. Fisiología vegetal aplicada. Interamericana. Mc Graw Hill. México. 275p.
PINEDA-MARES, P.; MARTÍNEZ-MONTOYA, J.; AMANTE-OROZCO, A.; RUIZ-VERA, V. 2001. Respuesta del maíz al fósforo y un mejorador de suelos en áreas yesosas de la zona media de San Luis de Potosí. Rev. Chapingo Serie zonas áridas. p.106-113.
BEEBE, S.; RAO, I.; CAJIAO, C.; GRAJALES, M. 2008. Selection for drought resistance in common bean also improves yield in phosphorus limited and favorable environments. Crop Sci. 48:582-592.
AZCÓN-BIETO, J.; TALÓN, M. 2013. Fundamentos de fisiología vegetal. 2a ed. Mc Graw Hill. Universidad de Barcelona. España. 656p.
APÁEZ, P.; ESCALANTE, J.; RAMÍREZ, P.; DOUGLAS, S.; SOSA, E.; OLALDE, V. 2013. Eficiencia agronómica de nitrógeno y fósforo en la producción de fríjol chino en espaldera de maíz. Terra Latinoamericana. 31(4):285-293.
ADATIA, M.; BESFORD, R. 1986. The effects of silicon on cucumber plants grown in recirculating nutrient solution. Ann. Bot. 58:343-351.
ABAYOMI, Y.A.; AJIBADE, T.; SAMMUEL, O.; SAADUDEEN, B. 2008. Growth and yield responses of cowpea (Vigna unguiculata L.) genotypes to nitrogen fertilizer (NPK) application in the Southern Guinea Savanna zone of Nigeria. Asian J. Plant Sci. 7:170-176.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_1843
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2017-06-30
date_accessioned 2017-06-30T00:00:00Z
date_available 2017-06-30T00:00:00Z
url https://revistas.udca.edu.co/index.php/ruadc/article/view/62
url_doi https://doi.org/10.31910/rudca.v20.n1.2017.62
issn 0123-4226
eissn 2619-2551
doi 10.31910/rudca.v20.n1.2017.62
citationstartpage 51
citationendpage 59
url2_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/download/62/32
url3_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/download/62/1363
_version_ 1797159430368788480