Comparación de las emisiones de CO2 y la eficiencia potencial entre el biodiesel y el diésel renovable

El uso de biocombustibles renovables tiene importantes ventajas, como el aumento de la eficiencia energética, la diversificación de la matriz energética de los países y la reducción de los gases de efecto invernadero, entre otras. Los combustibles fósiles, además, están comenzando un paulatino agotamiento. Los biocombustibles, como el biodiésel y el diésel renovable (también llamado diésel verde o aceite vegetal hidro tratado), se han convertido en importantes campos de investigación, ya que pueden mitigar los perjuicios medioambientales sin afectar a la calidad del transporte. Tanto el biodiésel como el diésel renovable proceden de la misma biomasa, que puede variar entre aceite vegetal, grasas animales, aceite de microalgas y aceite de co... Ver más

Guardado en:

2248-4817

15

2024-04-29

1055

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id 1086d77ca3d11c7dae2b3738d5eb1848
record_format ojs
spelling Comparación de las emisiones de CO2 y la eficiencia potencial entre el biodiesel y el diésel renovable
Combustible
Revista Sistemas de Producción Agroecológicos
Universidad de los Llanos
Artículo de revista
1
15
Óleo vegetal
Biomassa
Combustível
Biomasa
El uso de biocombustibles renovables tiene importantes ventajas, como el aumento de la eficiencia energética, la diversificación de la matriz energética de los países y la reducción de los gases de efecto invernadero, entre otras. Los combustibles fósiles, además, están comenzando un paulatino agotamiento. Los biocombustibles, como el biodiésel y el diésel renovable (también llamado diésel verde o aceite vegetal hidro tratado), se han convertido en importantes campos de investigación, ya que pueden mitigar los perjuicios medioambientales sin afectar a la calidad del transporte. Tanto el biodiésel como el diésel renovable proceden de la misma biomasa, que puede variar entre aceite vegetal, grasas animales, aceite de microalgas y aceite de cocina usado. Cada combustible se produce mediante un proceso diferente (transesterificación en el caso del biodiésel e hidrotratamiento en el del diésel renovable). Por esta razón, cada uno de ellos tiene propiedades químicas y físicas diferentes que determinan su rendimiento, incluyendo su eficiencia y las emisiones de CO2. Esta revisión analiza las materias primas de biomasa utilizadas y realiza una comparación entre los procesos de transformación, la eficiencia y las emisiones potenciales de CO2.  Por último, establece las ventajas e inconvenientes del uso de biodiésel y diésel renovable.
Alonso-Gomez, Leonardo Alexis
Alonso-Jaramillo, Jeronimo
Aceite vegetal
• Mofijur, M., Rasul, M. G., Hassan, N. M. S., & Nabi, M. N. (2019). Recent development in the production of third generation biodiesel from microalgae. In Energy Procedia, 5th International Conference on Power and Energy Systems Engineering (CPESE 2018) (Vol. 156, pp. 53–58). https://doi.org/10.1016/j.egypro.2018.11.088
• Morgenstern, C. (2022). Hydrotreated Vegetable Oil (HVO) explained. Cummins Inc. https://www.cummins.com/news/2022/07/01/hydrotreated-vegetable-oil-hvo-explained
• Garraín, D., Herrera, I., Lago, C., Lechón, Y., & Sáez, R. (2010). Renewable Diesel Fuel from Processing of Vegetable Oil in Hydrotreatment Units: Theoretical Compliance with European Directive 2009/28/EC and Ongoing Projects in Spain. Smart Grid and Renewable Energy, 01, 70–73. https://doi.org/10.4236/sgre.2010.12011
• Moodley, P. (2021). Sustainable biofuels: Opportunities and challenges. In R. C. Ray (Ed.), Sustainable Biofuels, Applied Biotechnology Reviews (pp. 1–20). Academic Press. https://doi.org/10.1016/B978-0-12-820297-5.00003-7
• Julio, A. A. V., Milessi, T. S., Ocampo Batlle, E. A., Silva Lora, E. E., Yepes Maya, D. M., & Escobar Palacio, J. C. (2022). Techno-economic and environmental potential of Renewable Diesel as complementation for diesel and biodiesel in Brazil: A comprehensive review and perspectives. Journal of Cleaner Production, 371, 133431. https://doi.org/10.1016/j.jclepro.2022.133431
• Maziero, J. V. G., Corrêa, I. M., Bernardi, J. A., & Storino, M. (2007). Desempenho de um motor diesel com óleo bruto de girassol. Revista Brasileira de Agrociência, 13, 249–255.
• Komariah, L. N., Arita, S., Rendana, M., Ramayanti, C., Suriani, N. L., & Erisna, D. (2022). Microbial contamination of diesel-biodiesel blends in storage tank; an analysis of colony morphology. Heliyon, 8, e09264. https://doi.org/10.1016/j.heliyon.2022.e09264
• Gerveni, M., Hubbs, T., & Irwin, S. (2024). Revisiting Biomass-Based Diesel Feedstock Trends over 2011-2022. Farmdoc Daily, 14.
• Hernández, J. J., Rodríguez-Fernández, J., & Calle-Asensio, A. (2020). Performance and regulated gaseous emissions of a Euro 6 diesel vehicle with Lean NOx Trap at different ambient conditions: Sensitivity to the type of fuel. Energy Conversion and Management, 219. https://doi.org/10.1016/j.enconman.2020.113023
• Quevedo-Amador, R. A., Escalera-Velasco, B. P., Arias, A. M. R., Reynel-Ávila, H. E., Moreno-Piraján, J. C., Giraldo, L., & Bonilla-Petriciolet, A. (2024). Application of waste biomass for the production of biofuels and catalysts: A review. Clean Technologies and Environmental Policy. https://doi.org/10.1007/s10098-023-02728-4
• IATA. (2019). Fact Sheet 6: Examples of ground transport biofuel mandates around the world, 1–6.
• Neste Corporation. (2020). Neste Renewable Diesel Handbook. https://www.neste.com/renewable-diesel-handbook
info:eu-repo/semantics/article
• Simbi, I., Aigbe, U. O., Oyekola, O. O., & Osibote, O. A. (2022). Chemical and quality performance of biodiesel and petrol blends. Energy Conversion and Management: X, 15, 100256. https://doi.org/10.1016/j.ecmx.2022.100256
• Tavel CO2. (2017). Transport calculations | Travel & climate. Swedish National Travel Survey. https://travelandclimate.org/transport-calculations
• Uchino, K. (2022). Piezoelectric devices for sustainability technologies. In Earth Systems and Environmental Sciences. Elsevier. https://doi.org/10.1016/B978-0-323-90386-8.00014-0
• United Nations. (2022). The Paris Agreement | UNFCCC. https://unfccc.int/process-and-meetings/the-paris-agreement
• Your NRG. (2023). HVO fuel specifications | HVO vs Diesel & Biodiesel. https://yournrg.co.uk/advice-hub/hvo/hvo-fuel-specifications
• ETIP Bioenergy - European Technology and Innovation Platform. (2020). Hydrogenated vegetable oil (HVO), 1–4.
http://purl.org/coar/resource_type/c_6501
http://purl.org/redcol/resource_type/ARTREF
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
• Firdaus, N., Aunillah, A., Wardiana, E., Pranowo, D., Herman, M., & Syafaruddin. (2022). Comparison of engine performance and emissions for fuels of diesel-biodiesel blends and pure biodiesel. IOP Conference Series: Earth and Environmental Science, 1038, 012025. https://doi.org/10.1088/1755-1315/1038/1/012025
• Anuar, M. R., & Abdullah, A. Z. (2016). Challenges in biodiesel industry with regards to feedstock, environmental, social and sustainability issues: A critical review. Renewable and Sustainable Energy Reviews, 58, 208–223. https://doi.org/10.1016/j.rser.2015.12.296
• Dynamicscience. (2020). Chemistry-biofuels-comparing biodiesel and petrodiesel. http://www.dynamicscience.com.au/tester/solutions1/chemistry/organic/diesels.html
https://creativecommons.org/licenses/by-nc-sa/4.0/
Renewable biofuels have several advantages, including increasing energy efficiency, diversifying the energy matrix of countries, and reducing greenhouse gases. Moreover, fossil fuels are gradually depleting. Biofuels such as biodiesel and renewable diesel, also known as green diesel or hydrotreated vegetable oil, are becoming essential fields of study as they can mitigate environmental damage without affecting transportation quality. Both biodiesel and renewable diesel are produced from the same biomass, which can come from vegetable oil, animal fats, microalgal oil, or waste cooking oil. Each fuel is created through a different process, transesterification for biodiesel and hydrotreatment for renewable diesel. As a result, each has distinct chemical and physical properties that determine their performance, including efficiency and CO2 emissions. This review examines the biomass feedstock used, compares the transformation processes, efficiency, and potential CO2 emissions, and identifies the advantages and disadvantages of using biodiesel and renewable diesel.
Biomass
Fuel
Vegetable oil
Journal article
application/pdf
https://revistas.unillanos.edu.co/index.php/sistemasagroecologicos/article/view/1055
• Douvartzides, S. L., Charisiou, N. D., Papageridis, K. N., & Goula, M. A. (2019). Green diesel: Biomass feedstocks, production technologies, catalytic research, fuel properties and performance in compression ignition internal combustion engines. Energies, 12. https://doi.org/10.3390/en12050809
Inglés
Publication
• Banković-Ilić, I. B., Stamenković, O. S., & Veljković, V. B. (2012). Biodiesel production from non-edible plant oils. Renewable and Sustainable Energy Reviews, 16, 3621–3647. https://doi.org/10.1016/j.rser.2012.03.002
• Adetunji, J. (2017). Fact check: Are diesel cars really more polluting than petrol cars? The Conversation. https://theconversation.com/fact-check-are-diesel-cars-really-more-polluting-than-petrol-cars-76241
• Ahmad, S., Jafry, A. T., Haq, M. ul, Abbas, N., Ajab, H., Hussain, A., Sajjad, U. (2023). Performance and Emission Characteristics of Second-Generation Biodiesel with Oxygenated Additives. Energies, 16, 5153. https://doi.org/10.3390/en16135153
• Dimitriadis, A., & Natsios, I. (2018). Evaluation of a Hydrotreated Vegetable Oil (HVO) and Effects on Emissions of a Passenger Car Diesel Engine. Frontiers in Energy Research, 4.
• Alonso-Gomez, L., & Bello‐Pérez, L. A. (2018). Materias primas usadas para la producción de etanol de cuatro generaciones: retos y oportunidades. Agrociencia, 52, 967–990.
• Department of Energy, U. (2019). Biofuels & Greenhouse Gas Emissions: Myths versus Facts. EERE, New York, NY.
Comparison of CO2 emissions and potential efficiency between biodiesel and renewable diesel fuels
• Costa, M., Marchitto, L., Piazzullo, D., & Prati, M. V. (2021). Comparison between the energetic and environmental performance of a combined heat and power unit fueled with diesel and waste vegetable oil: An experimental and numerical study. Renewable Energy, 168, 791–805. https://doi.org/10.1016/j.renene.2020.12.099
• Aatola, H., Larmi, M., Sarjovaara, T., & Mikkonen, S. (2008). Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine. SAE International Journal of Engines, 1, 1251–1262. https://doi.org/10.4271/2008-01-2500
• Cárdenas, M. D., Armas, O., Mata, C., & Soto, F. (2016). Performance and pollutant emissions from transient operation of a common rail diesel engine fueled with different biodiesel fuels. Fuel, 185, 743–762. https://doi.org/10.1016/j.fuel.2016.08.002
1055
2024-04-29
2024-04-29T00:00:00Z
2024-04-29T00:00:00Z
https://revistas.unillanos.edu.co/index.php/sistemasagroecologicos/article/download/1055/1090
2248-4817
10.22579/22484817.1055
https://doi.org/10.22579/22484817.1055
institution UNIVERSIDAD DE LOS LLANOS
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDELOSLLANOS/logo.png
country_str Colombia
collection Revista Sistemas de Producción Agroecológicos
title Comparación de las emisiones de CO2 y la eficiencia potencial entre el biodiesel y el diésel renovable
spellingShingle Comparación de las emisiones de CO2 y la eficiencia potencial entre el biodiesel y el diésel renovable
Alonso-Gomez, Leonardo Alexis
Alonso-Jaramillo, Jeronimo
Combustible
Óleo vegetal
Biomassa
Combustível
Biomasa
Aceite vegetal
Biomass
Fuel
Vegetable oil
title_short Comparación de las emisiones de CO2 y la eficiencia potencial entre el biodiesel y el diésel renovable
title_full Comparación de las emisiones de CO2 y la eficiencia potencial entre el biodiesel y el diésel renovable
title_fullStr Comparación de las emisiones de CO2 y la eficiencia potencial entre el biodiesel y el diésel renovable
title_full_unstemmed Comparación de las emisiones de CO2 y la eficiencia potencial entre el biodiesel y el diésel renovable
title_sort comparación de las emisiones de co2 y la eficiencia potencial entre el biodiesel y el diésel renovable
title_eng Comparison of CO2 emissions and potential efficiency between biodiesel and renewable diesel fuels
description El uso de biocombustibles renovables tiene importantes ventajas, como el aumento de la eficiencia energética, la diversificación de la matriz energética de los países y la reducción de los gases de efecto invernadero, entre otras. Los combustibles fósiles, además, están comenzando un paulatino agotamiento. Los biocombustibles, como el biodiésel y el diésel renovable (también llamado diésel verde o aceite vegetal hidro tratado), se han convertido en importantes campos de investigación, ya que pueden mitigar los perjuicios medioambientales sin afectar a la calidad del transporte. Tanto el biodiésel como el diésel renovable proceden de la misma biomasa, que puede variar entre aceite vegetal, grasas animales, aceite de microalgas y aceite de cocina usado. Cada combustible se produce mediante un proceso diferente (transesterificación en el caso del biodiésel e hidrotratamiento en el del diésel renovable). Por esta razón, cada uno de ellos tiene propiedades químicas y físicas diferentes que determinan su rendimiento, incluyendo su eficiencia y las emisiones de CO2. Esta revisión analiza las materias primas de biomasa utilizadas y realiza una comparación entre los procesos de transformación, la eficiencia y las emisiones potenciales de CO2.  Por último, establece las ventajas e inconvenientes del uso de biodiésel y diésel renovable.
description_eng Renewable biofuels have several advantages, including increasing energy efficiency, diversifying the energy matrix of countries, and reducing greenhouse gases. Moreover, fossil fuels are gradually depleting. Biofuels such as biodiesel and renewable diesel, also known as green diesel or hydrotreated vegetable oil, are becoming essential fields of study as they can mitigate environmental damage without affecting transportation quality. Both biodiesel and renewable diesel are produced from the same biomass, which can come from vegetable oil, animal fats, microalgal oil, or waste cooking oil. Each fuel is created through a different process, transesterification for biodiesel and hydrotreatment for renewable diesel. As a result, each has distinct chemical and physical properties that determine their performance, including efficiency and CO2 emissions. This review examines the biomass feedstock used, compares the transformation processes, efficiency, and potential CO2 emissions, and identifies the advantages and disadvantages of using biodiesel and renewable diesel.
author Alonso-Gomez, Leonardo Alexis
Alonso-Jaramillo, Jeronimo
author_facet Alonso-Gomez, Leonardo Alexis
Alonso-Jaramillo, Jeronimo
topicspa_str_mv Combustible
Óleo vegetal
Biomassa
Combustível
Biomasa
Aceite vegetal
topic Combustible
Óleo vegetal
Biomassa
Combustível
Biomasa
Aceite vegetal
Biomass
Fuel
Vegetable oil
topic_facet Combustible
Óleo vegetal
Biomassa
Combustível
Biomasa
Aceite vegetal
Biomass
Fuel
Vegetable oil
citationvolume 15
citationissue 1
publisher Universidad de los Llanos
ispartofjournal Revista Sistemas de Producción Agroecológicos
source https://revistas.unillanos.edu.co/index.php/sistemasagroecologicos/article/view/1055
language Inglés
format Article
rights info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-sa/4.0/
references_eng • Mofijur, M., Rasul, M. G., Hassan, N. M. S., & Nabi, M. N. (2019). Recent development in the production of third generation biodiesel from microalgae. In Energy Procedia, 5th International Conference on Power and Energy Systems Engineering (CPESE 2018) (Vol. 156, pp. 53–58). https://doi.org/10.1016/j.egypro.2018.11.088
• Morgenstern, C. (2022). Hydrotreated Vegetable Oil (HVO) explained. Cummins Inc. https://www.cummins.com/news/2022/07/01/hydrotreated-vegetable-oil-hvo-explained
• Garraín, D., Herrera, I., Lago, C., Lechón, Y., & Sáez, R. (2010). Renewable Diesel Fuel from Processing of Vegetable Oil in Hydrotreatment Units: Theoretical Compliance with European Directive 2009/28/EC and Ongoing Projects in Spain. Smart Grid and Renewable Energy, 01, 70–73. https://doi.org/10.4236/sgre.2010.12011
• Moodley, P. (2021). Sustainable biofuels: Opportunities and challenges. In R. C. Ray (Ed.), Sustainable Biofuels, Applied Biotechnology Reviews (pp. 1–20). Academic Press. https://doi.org/10.1016/B978-0-12-820297-5.00003-7
• Julio, A. A. V., Milessi, T. S., Ocampo Batlle, E. A., Silva Lora, E. E., Yepes Maya, D. M., & Escobar Palacio, J. C. (2022). Techno-economic and environmental potential of Renewable Diesel as complementation for diesel and biodiesel in Brazil: A comprehensive review and perspectives. Journal of Cleaner Production, 371, 133431. https://doi.org/10.1016/j.jclepro.2022.133431
• Maziero, J. V. G., Corrêa, I. M., Bernardi, J. A., & Storino, M. (2007). Desempenho de um motor diesel com óleo bruto de girassol. Revista Brasileira de Agrociência, 13, 249–255.
• Komariah, L. N., Arita, S., Rendana, M., Ramayanti, C., Suriani, N. L., & Erisna, D. (2022). Microbial contamination of diesel-biodiesel blends in storage tank; an analysis of colony morphology. Heliyon, 8, e09264. https://doi.org/10.1016/j.heliyon.2022.e09264
• Gerveni, M., Hubbs, T., & Irwin, S. (2024). Revisiting Biomass-Based Diesel Feedstock Trends over 2011-2022. Farmdoc Daily, 14.
• Hernández, J. J., Rodríguez-Fernández, J., & Calle-Asensio, A. (2020). Performance and regulated gaseous emissions of a Euro 6 diesel vehicle with Lean NOx Trap at different ambient conditions: Sensitivity to the type of fuel. Energy Conversion and Management, 219. https://doi.org/10.1016/j.enconman.2020.113023
• Quevedo-Amador, R. A., Escalera-Velasco, B. P., Arias, A. M. R., Reynel-Ávila, H. E., Moreno-Piraján, J. C., Giraldo, L., & Bonilla-Petriciolet, A. (2024). Application of waste biomass for the production of biofuels and catalysts: A review. Clean Technologies and Environmental Policy. https://doi.org/10.1007/s10098-023-02728-4
• IATA. (2019). Fact Sheet 6: Examples of ground transport biofuel mandates around the world, 1–6.
• Neste Corporation. (2020). Neste Renewable Diesel Handbook. https://www.neste.com/renewable-diesel-handbook
• Simbi, I., Aigbe, U. O., Oyekola, O. O., & Osibote, O. A. (2022). Chemical and quality performance of biodiesel and petrol blends. Energy Conversion and Management: X, 15, 100256. https://doi.org/10.1016/j.ecmx.2022.100256
• Tavel CO2. (2017). Transport calculations | Travel & climate. Swedish National Travel Survey. https://travelandclimate.org/transport-calculations
• Uchino, K. (2022). Piezoelectric devices for sustainability technologies. In Earth Systems and Environmental Sciences. Elsevier. https://doi.org/10.1016/B978-0-323-90386-8.00014-0
• United Nations. (2022). The Paris Agreement | UNFCCC. https://unfccc.int/process-and-meetings/the-paris-agreement
• Your NRG. (2023). HVO fuel specifications | HVO vs Diesel & Biodiesel. https://yournrg.co.uk/advice-hub/hvo/hvo-fuel-specifications
• ETIP Bioenergy - European Technology and Innovation Platform. (2020). Hydrogenated vegetable oil (HVO), 1–4.
• Firdaus, N., Aunillah, A., Wardiana, E., Pranowo, D., Herman, M., & Syafaruddin. (2022). Comparison of engine performance and emissions for fuels of diesel-biodiesel blends and pure biodiesel. IOP Conference Series: Earth and Environmental Science, 1038, 012025. https://doi.org/10.1088/1755-1315/1038/1/012025
• Anuar, M. R., & Abdullah, A. Z. (2016). Challenges in biodiesel industry with regards to feedstock, environmental, social and sustainability issues: A critical review. Renewable and Sustainable Energy Reviews, 58, 208–223. https://doi.org/10.1016/j.rser.2015.12.296
• Dynamicscience. (2020). Chemistry-biofuels-comparing biodiesel and petrodiesel. http://www.dynamicscience.com.au/tester/solutions1/chemistry/organic/diesels.html
• Douvartzides, S. L., Charisiou, N. D., Papageridis, K. N., & Goula, M. A. (2019). Green diesel: Biomass feedstocks, production technologies, catalytic research, fuel properties and performance in compression ignition internal combustion engines. Energies, 12. https://doi.org/10.3390/en12050809
• Banković-Ilić, I. B., Stamenković, O. S., & Veljković, V. B. (2012). Biodiesel production from non-edible plant oils. Renewable and Sustainable Energy Reviews, 16, 3621–3647. https://doi.org/10.1016/j.rser.2012.03.002
• Adetunji, J. (2017). Fact check: Are diesel cars really more polluting than petrol cars? The Conversation. https://theconversation.com/fact-check-are-diesel-cars-really-more-polluting-than-petrol-cars-76241
• Ahmad, S., Jafry, A. T., Haq, M. ul, Abbas, N., Ajab, H., Hussain, A., Sajjad, U. (2023). Performance and Emission Characteristics of Second-Generation Biodiesel with Oxygenated Additives. Energies, 16, 5153. https://doi.org/10.3390/en16135153
• Dimitriadis, A., & Natsios, I. (2018). Evaluation of a Hydrotreated Vegetable Oil (HVO) and Effects on Emissions of a Passenger Car Diesel Engine. Frontiers in Energy Research, 4.
• Alonso-Gomez, L., & Bello‐Pérez, L. A. (2018). Materias primas usadas para la producción de etanol de cuatro generaciones: retos y oportunidades. Agrociencia, 52, 967–990.
• Department of Energy, U. (2019). Biofuels & Greenhouse Gas Emissions: Myths versus Facts. EERE, New York, NY.
• Costa, M., Marchitto, L., Piazzullo, D., & Prati, M. V. (2021). Comparison between the energetic and environmental performance of a combined heat and power unit fueled with diesel and waste vegetable oil: An experimental and numerical study. Renewable Energy, 168, 791–805. https://doi.org/10.1016/j.renene.2020.12.099
• Aatola, H., Larmi, M., Sarjovaara, T., & Mikkonen, S. (2008). Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine. SAE International Journal of Engines, 1, 1251–1262. https://doi.org/10.4271/2008-01-2500
• Cárdenas, M. D., Armas, O., Mata, C., & Soto, F. (2016). Performance and pollutant emissions from transient operation of a common rail diesel engine fueled with different biodiesel fuels. Fuel, 185, 743–762. https://doi.org/10.1016/j.fuel.2016.08.002
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2024-04-29
date_accessioned 2024-04-29T00:00:00Z
date_available 2024-04-29T00:00:00Z
url https://revistas.unillanos.edu.co/index.php/sistemasagroecologicos/article/view/1055
url_doi https://doi.org/10.22579/22484817.1055
eissn 2248-4817
doi 10.22579/22484817.1055
citationendpage 1055
url2_str_mv https://revistas.unillanos.edu.co/index.php/sistemasagroecologicos/article/download/1055/1090
_version_ 1798735559055638528