Huella de carbono en cadenas productivas de café (coffea Arabica l.) con diferentes estándares de certificación en Costa Rica

Se estudió el impacto en la producción de café con diferentes estándares de certificación (producción convencional, producción orgánica –NOP y Unión Europea- , UTZ Kapeh, Comercio Justo, Rainforest Alliance y CAFE Practices) sobre la huella de carbono en Costa Rica. Las emisiones de gases de efecto invernadero (GEI) se estimaron en nueve fincas y ocho empresas procesadoras del grano. Se estimó la fijación de carbono en biomasa total, en árboles de sombra y cafetos, midiendo las plantas, empleando modelos de biomasa y factores de expansión de biomasa, una fracción de carbono de 0,5 e indagando a productores sobre la edad de los componentes del sistema. Se emplearon factores de emisión recomendados por el IPCC (Intergovernmental Panel on Clim... Ver más

Guardado en:

1909-2474

2012-07-01

60

77

http://purl.org/coar/access_right/c_abf2

info:eu-repo/semantics/openAccess

Luna Azul - 2015

id 055338ef0fa2e109ab1f2eb03250e3d7
record_format ojs
spelling Huella de carbono en cadenas productivas de café (coffea Arabica l.) con diferentes estándares de certificación en Costa Rica
 Environment Canada (EC). (2007). National Inventory Report 1990-2005: gas sources and sinks in Canada. Gatineau, Quebec: Autor.
 Intergovernmental Panel on Climate Change (IPCC) (2006). IPCC Guidelines for National Greenhouse Gas Inventories, Intergovernmental Panel on Climate Change National Greenhouse Gas Inventories Programme. Obtenido desde: http://www.ipcc-nggip.iges.or.jp/public/2006gl/.
Intergovernmental Panel on Climate Change. (IPCC) (2005). Métodos complementarios y orientación sobre las buenas prácticas que emanan del Protocolo de Kyoto. Orientación del IPCC sobre las buenas prácticas para uso de la tierra, cambio de uso de la tierra y silvicultura.Capítulo 4. Obtenido desde: http://www.ipccnggip.iges.or.jp/public/gpglulucf/gpglulucf.html.
 Intergovernmental Panel on Climate Change (IPCC). (2003). National Greenhouse Gas Inventories Programme Intergovernmental. Good Practice Guidance for Land Use, Land-Use Change and Forestry. En IPCC Good Practice Guidance for LULUCF, Chapter 4: Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol, Panel on Climate Change (pp. 113-116). Hayama,Kanagawa, Japón: Autor.
 Hergoualc’h, K.; Blanchart, E.; Skiba, U.; Henault, C. & Harmand, J. M. (2012). Changes in carbon stock and greenhouse gas balance in a coffee (Coffea arabica) monoculture versus an agroforestry system with Inga densiflora, in Costa Rica. Agriculture, Ecosystems and Environment, 148: 102–110.
 Gonzalez, D. (2001). Estudio de casos sobre combustibles forestales, Panamá. Proyecto Información y análisis para el manejo forestal sostenible: integrando esfuerzos nacionales e internacionales en 13 países tropicales en América Latina. Buenos Aires, Argentina: Unión Europea-FAO.
 Giovannucci, D. & Koekoek, F. J. (2003). The state of sustainable coffee: a study of twelve major markets. California, USA: Feriva.
 Chaves, E. & Fonseca, W. (1991). Ciprés, Cupressus lusitanica Miller, especie de árbol de uso múltiple en América Central. Serie Técnica, Informe Técnico No. 168.Turrialba, Costa Rica: CATIE.
 Johnson, J.; Fransluebbers, A. J.; Weyers, S. L. & Reicosky, D. C. (2007). Agricultural opportunities to mitigate greenhouse gas emissions. Environmental pollution, 150: 107-124.
 Chacón, A. R.; Montenegro, J. & Sasa, J. (2009). Inventario nacional de emisión de gases con efecto nvernadero y de absorción de carbono en Costa Rica en el 2000 y 2005. San José, Costa Rica: Instituto Meteorológico Nacional.
 Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). (1994). Deglupta (Eucalyptus deglupta), especie de árbol de uso múltiple en América Central. Serie Técnica, Informe Técnico No. 240. Turrialba, Costa Rica: Autor.
 Cairns, M. A.; Brown, S.; Helmer, E. H. & Baumgardner, G.A. (1997). Root biomass allocation in the world’supland forests. Oecologia, 111: 1-11.
 Beer, J.; Harvey, C.; Ibrahim, M.; Harmand, J. M.; Somarriba, E. & Jiménez, F. (2003). Servicios ambientales de los sistemas agroforestales. Agroforestería en las Américas, 10: 80-87.
 Avilés, I. I. (2009). Fijación biológica de nitrógeno y almacenamiento de carbono en agrosistemas de producción de café (Coffea arabica L) en Puerto Rico. (Tesis de maestría no publicada). Universidad de Puerto Rico, Mayagüez, Puerto Rico.
 Ávila, G.; Jiménez, F.; Beer, J.; Gómez, M. & Ibrahim, M. (2001). Almacenamiento, fijación de carbono y valoración de servicios ambientales en sistemas agroforestales.Agroforestería en las Américas, 8(30): 32–35.
 Intergovernmental Panel on Climate Change (IPCC). (2007).IPCC Fourth Assessment Report: Climate Change 2007.Obtenido desde: http://www.ipcc.ch/publications_and_data/ar4/syr/en/figure-spm-3.html.
 Ministerio de Planificación Nacional y Política Económica (MIDEPLAN). (2008). Sistema de Indicadores sobre Desarrollo Sostenible (SIDES). Generación eléctrica de Costa Rica por tipo de generación (en GigaWatt-hora): 1990–2000. Obtenido desde:http://www.mideplan.go.cr/sides/ambiental/29-7.htm.
 Aristizábal, J. & Guerra, A. (2002). Estimación de la tasa de fijación de carbono en el sistema agroforestal nogal cafetero Cordia alliodora -cacao Theobroma cacao L-plátano Musa paradisiaca. (Tesis de Ingeniería Forestal no publicada). Universidad Distrital, Bogotá, Colombia.
info:eu-repo/semantics/article
Text
http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
 Wunder, S. (2007).The efficiency of payments for environmental services in tropical conservation. Conservation Biology. 21(1): 48-58.
 Montagnini, F; Nair PKR. (2004). Carbon sequestration: an underexploited environmental benefit of agroforestry systems. Agroforestry Systems. 61–62(1–3): 281–295.
 World Resource Institute (WRI) & World Business Council for Sustainable Development (WBCSD). (2007). Guidelines for quantifying GHG reductions from grid-connected electricity projects.Ginebra: Author.
 United States Agency for International Development (USAID) (2006). Central America and Dominican Republic quality coffee program (CADR QCP). Final Report. 49 p. Washington, D.C.: Author.
 Soto-Pinto, L.; Anzueto, M.; Mendoza, J.; Jiménez-Ferrer, G. & De Jong, B. (2010). Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agroforestry Systems. 78: 39–51.
 Segura, M.; Kanninen, M. & Suárez, D. (2006). Allometric models for estimating aboveground biomass of shade trees and coffee bushes grown together. Agroforestry Systems. 68(2): 143-150.
 Philpott,S.; Bichier, P.; Rice, R. & Greenberg, R. (2007). Field-Testing Ecological and Economic Benefits of Coffee Certification Programs. Conservation Biology, 21(4): 975–985.
 Oelbermann, M.; Voroney, R. P. & Gordon, A. M. (2004). Carbon sequestration in tropical and temperate agroforestry systems: a review with examples from Costa Rica and Southern Canada. Agriculture Ecosystems and Environment. 104, 359–377.
 Noponen, R.; Edwards-Jones, G.; Haggar, J. P.; Soto, G.; Attarzadeh, N. & Healey, J. R. (2012).Greenhouse gas emissions in coffee grown with differing input levels underconventional and organic management. Agriculture,Ecosystems and Environment, 151, 6– 15.
 Ávila, G. (2000). Fijación y almacenamiento de carbono en sistemas de café bajo sombra, café a pleno sol, sistemas silvo-pastoriles y pasturas a pleno sol. (Tesis de maestría no publicada). CATIE, Turrialba, Costa Rica.
 Andrade, H. J.; Marín, L. M.; Pachón, D. P. & Segura, M. A. En edición. Fijación de carbono en sistemas de producción de café (Coffea arabica L.) en el Líbano, Tolima, Colombia.
 Andrade, H. J.; Segura, M. & Somarriba, E. En preparación. Ecuaciones de biomasa para estimar biomasa arriba del suelo de componentes leñosos en sistemas agroforestales indígenas.
application/pdf
Se estudió el impacto en la producción de café con diferentes estándares de certificación (producción convencional, producción orgánica –NOP y Unión Europea- , UTZ Kapeh, Comercio Justo, Rainforest Alliance y CAFE Practices) sobre la huella de carbono en Costa Rica. Las emisiones de gases de efecto invernadero (GEI) se estimaron en nueve fincas y ocho empresas procesadoras del grano. Se estimó la fijación de carbono en biomasa total, en árboles de sombra y cafetos, midiendo las plantas, empleando modelos de biomasa y factores de expansión de biomasa, una fracción de carbono de 0,5 e indagando a productores sobre la edad de los componentes del sistema. Se emplearon factores de emisión recomendados por el IPCC (Intergovernmental Panel on Climate Change). Los sistemas de producción fijaron entre 5,0 y 17,6 t CO2e/ha/año, sin un efecto de los estándares de certificación. La actividad que más emite GEI fue la fertilización nitrogenada (63-82% del total de emisiones). Las dos procesadoras con menor emisión de GEI (156 y 187 kg CO2e/t café verde) son aquellas que emplean la energía solar para secar parcialmente el café. La cadena de producción de café en Costa Rica mostró ser amigable con el medio ambiente, al fijar netamente entre 2,4 y 13,0 kg CO2e/kg de grano de café verde (en promedio 7,6 kg CO2e/kg de café verde y 8,1 t CO2e/ha/año). No se encontró impacto de los estándares de certificación pero si de los componentes del sistema en la huella de carbono en la cadena de producción de café. 
Segura, Milena A
Andrade, Hernán J.
Biomasa
combustibles fósiles
fertilización nitrogenada
mitigación
procesamiento
35
Núm. 35 , Año 2012 : Julio - Diciembre
Artículo de revista
Publication
Universidad de Caldas
Luna Azul
 Andrade, H. J.; Brook, R. & Ibrahim, M. (2008). Growth, production and carbon sequestration of silvo-pastoral systems with native timber species in the dry lowlands of Costa Rica. Plant and Soil. 308: 11-22.
 Amézquita, M. C.; Ibrahim, M.; Llanderal, T.; Buurman, P, & Amézquita, E. (2005). Carbon sequestration in pastures, silvo-pastoral systems and forests in four regions of the Latin American tropics. Journal of Sustainable Forestry. 25 (1): 31-49.
Albrecht, A. & Kandji S. T. (2003). Carbon sequestration intropical agroforestry systems. Agriculture, Ecosystems and Environment. 99: 15-27.
Luna Azul - 2015
https://revistasojs.ucaldas.edu.co/index.php/lunazul/article/view/1726
https://creativecommons.org/licenses/by-nc-sa/4.0/
Español
Abstract The impact in coffee production with different certification standards (conventional production, organic production – NOP and European Union-, UTZ Kapeh, Fairtrade, Rainforest Alliance and CAFE Practices) on Carbon Footprint in Costa Rica was studied. The greenhouse gas emissions (GHG) were estimated in nine farms and eight grain processing industries. Carbon fixation was estimated in total biomass in both shade trees and coffee bushes by measuring the plants, using biomass models and biomass expansion factors, a 0.5 fraction of carbon and asking producers about the age of the components in the system. IPCC (Intergovernmental Panel on Climate Change) recommended emission factors were used. The production systems fixed between 5,0 and 17,6 t CO2e/ha/year, without an effect of the certification standards. The activity emitting more GHG was nitrogenated fertilization (63-82% of total emissions). The two grain processing industries with less GEE emissions (156 and 187 CO2e/t green coffee) are those using solar energy for partial coffee drying. The coffee production chain in Costa Rica showed to be friendly with the environment while fixing a net between 2.4 and 13.0 kg CO2e/kg of green coffee grain (7.6 kg CO2e/kg of green coffee average and 8.1 t CO2e/ha/year). Impact on the certification standards was not found but it was found in the system components 
Biomass
fossil fuel
nitrogenated fertilization
mitigation
processing
Carbon footprint in coffee production chains (coffea Arabica l.) With different certification standards in Costa Rica
Journal article
https://revistasojs.ucaldas.edu.co/index.php/lunazul/article/view/1726
https://revistasojs.ucaldas.edu.co/index.php/lunazul/article/download/1726/1642
1909-2474
60
77
2012-07-01T00:00:00Z
2012-07-01T00:00:00Z
2012-07-01
institution UNIVERSIDAD DE CALDAS
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDECALDAS/logo.png
country_str Colombia
collection Luna Azul
title Huella de carbono en cadenas productivas de café (coffea Arabica l.) con diferentes estándares de certificación en Costa Rica
spellingShingle Huella de carbono en cadenas productivas de café (coffea Arabica l.) con diferentes estándares de certificación en Costa Rica
Segura, Milena A
Andrade, Hernán J.
Biomasa
combustibles fósiles
fertilización nitrogenada
mitigación
procesamiento
Biomass
fossil fuel
nitrogenated fertilization
mitigation
processing
title_short Huella de carbono en cadenas productivas de café (coffea Arabica l.) con diferentes estándares de certificación en Costa Rica
title_full Huella de carbono en cadenas productivas de café (coffea Arabica l.) con diferentes estándares de certificación en Costa Rica
title_fullStr Huella de carbono en cadenas productivas de café (coffea Arabica l.) con diferentes estándares de certificación en Costa Rica
title_full_unstemmed Huella de carbono en cadenas productivas de café (coffea Arabica l.) con diferentes estándares de certificación en Costa Rica
title_sort huella de carbono en cadenas productivas de café (coffea arabica l.) con diferentes estándares de certificación en costa rica
title_eng Carbon footprint in coffee production chains (coffea Arabica l.) With different certification standards in Costa Rica
description Se estudió el impacto en la producción de café con diferentes estándares de certificación (producción convencional, producción orgánica –NOP y Unión Europea- , UTZ Kapeh, Comercio Justo, Rainforest Alliance y CAFE Practices) sobre la huella de carbono en Costa Rica. Las emisiones de gases de efecto invernadero (GEI) se estimaron en nueve fincas y ocho empresas procesadoras del grano. Se estimó la fijación de carbono en biomasa total, en árboles de sombra y cafetos, midiendo las plantas, empleando modelos de biomasa y factores de expansión de biomasa, una fracción de carbono de 0,5 e indagando a productores sobre la edad de los componentes del sistema. Se emplearon factores de emisión recomendados por el IPCC (Intergovernmental Panel on Climate Change). Los sistemas de producción fijaron entre 5,0 y 17,6 t CO2e/ha/año, sin un efecto de los estándares de certificación. La actividad que más emite GEI fue la fertilización nitrogenada (63-82% del total de emisiones). Las dos procesadoras con menor emisión de GEI (156 y 187 kg CO2e/t café verde) son aquellas que emplean la energía solar para secar parcialmente el café. La cadena de producción de café en Costa Rica mostró ser amigable con el medio ambiente, al fijar netamente entre 2,4 y 13,0 kg CO2e/kg de grano de café verde (en promedio 7,6 kg CO2e/kg de café verde y 8,1 t CO2e/ha/año). No se encontró impacto de los estándares de certificación pero si de los componentes del sistema en la huella de carbono en la cadena de producción de café. 
description_eng Abstract The impact in coffee production with different certification standards (conventional production, organic production – NOP and European Union-, UTZ Kapeh, Fairtrade, Rainforest Alliance and CAFE Practices) on Carbon Footprint in Costa Rica was studied. The greenhouse gas emissions (GHG) were estimated in nine farms and eight grain processing industries. Carbon fixation was estimated in total biomass in both shade trees and coffee bushes by measuring the plants, using biomass models and biomass expansion factors, a 0.5 fraction of carbon and asking producers about the age of the components in the system. IPCC (Intergovernmental Panel on Climate Change) recommended emission factors were used. The production systems fixed between 5,0 and 17,6 t CO2e/ha/year, without an effect of the certification standards. The activity emitting more GHG was nitrogenated fertilization (63-82% of total emissions). The two grain processing industries with less GEE emissions (156 and 187 CO2e/t green coffee) are those using solar energy for partial coffee drying. The coffee production chain in Costa Rica showed to be friendly with the environment while fixing a net between 2.4 and 13.0 kg CO2e/kg of green coffee grain (7.6 kg CO2e/kg of green coffee average and 8.1 t CO2e/ha/year). Impact on the certification standards was not found but it was found in the system components 
author Segura, Milena A
Andrade, Hernán J.
author_facet Segura, Milena A
Andrade, Hernán J.
topicspa_str_mv Biomasa
combustibles fósiles
fertilización nitrogenada
mitigación
procesamiento
topic Biomasa
combustibles fósiles
fertilización nitrogenada
mitigación
procesamiento
Biomass
fossil fuel
nitrogenated fertilization
mitigation
processing
topic_facet Biomasa
combustibles fósiles
fertilización nitrogenada
mitigación
procesamiento
Biomass
fossil fuel
nitrogenated fertilization
mitigation
processing
citationissue 35
citationedition Núm. 35 , Año 2012 : Julio - Diciembre
publisher Universidad de Caldas
ispartofjournal Luna Azul
source https://revistasojs.ucaldas.edu.co/index.php/lunazul/article/view/1726
language Español
format Article
rights http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
Luna Azul - 2015
https://creativecommons.org/licenses/by-nc-sa/4.0/
references  Environment Canada (EC). (2007). National Inventory Report 1990-2005: gas sources and sinks in Canada. Gatineau, Quebec: Autor.
 Intergovernmental Panel on Climate Change (IPCC) (2006). IPCC Guidelines for National Greenhouse Gas Inventories, Intergovernmental Panel on Climate Change National Greenhouse Gas Inventories Programme. Obtenido desde: http://www.ipcc-nggip.iges.or.jp/public/2006gl/.
Intergovernmental Panel on Climate Change. (IPCC) (2005). Métodos complementarios y orientación sobre las buenas prácticas que emanan del Protocolo de Kyoto. Orientación del IPCC sobre las buenas prácticas para uso de la tierra, cambio de uso de la tierra y silvicultura.Capítulo 4. Obtenido desde: http://www.ipccnggip.iges.or.jp/public/gpglulucf/gpglulucf.html.
 Intergovernmental Panel on Climate Change (IPCC). (2003). National Greenhouse Gas Inventories Programme Intergovernmental. Good Practice Guidance for Land Use, Land-Use Change and Forestry. En IPCC Good Practice Guidance for LULUCF, Chapter 4: Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol, Panel on Climate Change (pp. 113-116). Hayama,Kanagawa, Japón: Autor.
 Hergoualc’h, K.; Blanchart, E.; Skiba, U.; Henault, C. & Harmand, J. M. (2012). Changes in carbon stock and greenhouse gas balance in a coffee (Coffea arabica) monoculture versus an agroforestry system with Inga densiflora, in Costa Rica. Agriculture, Ecosystems and Environment, 148: 102–110.
 Gonzalez, D. (2001). Estudio de casos sobre combustibles forestales, Panamá. Proyecto Información y análisis para el manejo forestal sostenible: integrando esfuerzos nacionales e internacionales en 13 países tropicales en América Latina. Buenos Aires, Argentina: Unión Europea-FAO.
 Giovannucci, D. & Koekoek, F. J. (2003). The state of sustainable coffee: a study of twelve major markets. California, USA: Feriva.
 Chaves, E. & Fonseca, W. (1991). Ciprés, Cupressus lusitanica Miller, especie de árbol de uso múltiple en América Central. Serie Técnica, Informe Técnico No. 168.Turrialba, Costa Rica: CATIE.
 Johnson, J.; Fransluebbers, A. J.; Weyers, S. L. & Reicosky, D. C. (2007). Agricultural opportunities to mitigate greenhouse gas emissions. Environmental pollution, 150: 107-124.
 Chacón, A. R.; Montenegro, J. & Sasa, J. (2009). Inventario nacional de emisión de gases con efecto nvernadero y de absorción de carbono en Costa Rica en el 2000 y 2005. San José, Costa Rica: Instituto Meteorológico Nacional.
 Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). (1994). Deglupta (Eucalyptus deglupta), especie de árbol de uso múltiple en América Central. Serie Técnica, Informe Técnico No. 240. Turrialba, Costa Rica: Autor.
 Cairns, M. A.; Brown, S.; Helmer, E. H. & Baumgardner, G.A. (1997). Root biomass allocation in the world’supland forests. Oecologia, 111: 1-11.
 Beer, J.; Harvey, C.; Ibrahim, M.; Harmand, J. M.; Somarriba, E. & Jiménez, F. (2003). Servicios ambientales de los sistemas agroforestales. Agroforestería en las Américas, 10: 80-87.
 Avilés, I. I. (2009). Fijación biológica de nitrógeno y almacenamiento de carbono en agrosistemas de producción de café (Coffea arabica L) en Puerto Rico. (Tesis de maestría no publicada). Universidad de Puerto Rico, Mayagüez, Puerto Rico.
 Ávila, G.; Jiménez, F.; Beer, J.; Gómez, M. & Ibrahim, M. (2001). Almacenamiento, fijación de carbono y valoración de servicios ambientales en sistemas agroforestales.Agroforestería en las Américas, 8(30): 32–35.
 Intergovernmental Panel on Climate Change (IPCC). (2007).IPCC Fourth Assessment Report: Climate Change 2007.Obtenido desde: http://www.ipcc.ch/publications_and_data/ar4/syr/en/figure-spm-3.html.
 Ministerio de Planificación Nacional y Política Económica (MIDEPLAN). (2008). Sistema de Indicadores sobre Desarrollo Sostenible (SIDES). Generación eléctrica de Costa Rica por tipo de generación (en GigaWatt-hora): 1990–2000. Obtenido desde:http://www.mideplan.go.cr/sides/ambiental/29-7.htm.
 Aristizábal, J. & Guerra, A. (2002). Estimación de la tasa de fijación de carbono en el sistema agroforestal nogal cafetero Cordia alliodora -cacao Theobroma cacao L-plátano Musa paradisiaca. (Tesis de Ingeniería Forestal no publicada). Universidad Distrital, Bogotá, Colombia.
 Wunder, S. (2007).The efficiency of payments for environmental services in tropical conservation. Conservation Biology. 21(1): 48-58.
 Montagnini, F; Nair PKR. (2004). Carbon sequestration: an underexploited environmental benefit of agroforestry systems. Agroforestry Systems. 61–62(1–3): 281–295.
 World Resource Institute (WRI) & World Business Council for Sustainable Development (WBCSD). (2007). Guidelines for quantifying GHG reductions from grid-connected electricity projects.Ginebra: Author.
 United States Agency for International Development (USAID) (2006). Central America and Dominican Republic quality coffee program (CADR QCP). Final Report. 49 p. Washington, D.C.: Author.
 Soto-Pinto, L.; Anzueto, M.; Mendoza, J.; Jiménez-Ferrer, G. & De Jong, B. (2010). Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agroforestry Systems. 78: 39–51.
 Segura, M.; Kanninen, M. & Suárez, D. (2006). Allometric models for estimating aboveground biomass of shade trees and coffee bushes grown together. Agroforestry Systems. 68(2): 143-150.
 Philpott,S.; Bichier, P.; Rice, R. & Greenberg, R. (2007). Field-Testing Ecological and Economic Benefits of Coffee Certification Programs. Conservation Biology, 21(4): 975–985.
 Oelbermann, M.; Voroney, R. P. & Gordon, A. M. (2004). Carbon sequestration in tropical and temperate agroforestry systems: a review with examples from Costa Rica and Southern Canada. Agriculture Ecosystems and Environment. 104, 359–377.
 Noponen, R.; Edwards-Jones, G.; Haggar, J. P.; Soto, G.; Attarzadeh, N. & Healey, J. R. (2012).Greenhouse gas emissions in coffee grown with differing input levels underconventional and organic management. Agriculture,Ecosystems and Environment, 151, 6– 15.
 Ávila, G. (2000). Fijación y almacenamiento de carbono en sistemas de café bajo sombra, café a pleno sol, sistemas silvo-pastoriles y pasturas a pleno sol. (Tesis de maestría no publicada). CATIE, Turrialba, Costa Rica.
 Andrade, H. J.; Marín, L. M.; Pachón, D. P. & Segura, M. A. En edición. Fijación de carbono en sistemas de producción de café (Coffea arabica L.) en el Líbano, Tolima, Colombia.
 Andrade, H. J.; Segura, M. & Somarriba, E. En preparación. Ecuaciones de biomasa para estimar biomasa arriba del suelo de componentes leñosos en sistemas agroforestales indígenas.
 Andrade, H. J.; Brook, R. & Ibrahim, M. (2008). Growth, production and carbon sequestration of silvo-pastoral systems with native timber species in the dry lowlands of Costa Rica. Plant and Soil. 308: 11-22.
 Amézquita, M. C.; Ibrahim, M.; Llanderal, T.; Buurman, P, & Amézquita, E. (2005). Carbon sequestration in pastures, silvo-pastoral systems and forests in four regions of the Latin American tropics. Journal of Sustainable Forestry. 25 (1): 31-49.
Albrecht, A. & Kandji S. T. (2003). Carbon sequestration intropical agroforestry systems. Agriculture, Ecosystems and Environment. 99: 15-27.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2012-07-01
date_accessioned 2012-07-01T00:00:00Z
date_available 2012-07-01T00:00:00Z
url https://revistasojs.ucaldas.edu.co/index.php/lunazul/article/view/1726
url_doi https://revistasojs.ucaldas.edu.co/index.php/lunazul/article/view/1726
eissn 1909-2474
citationstartpage 60
citationendpage 77
url2_str_mv https://revistasojs.ucaldas.edu.co/index.php/lunazul/article/download/1726/1642
_version_ 1797376325354258432