Zonas homogéneas para manejo específico por sitio en maíz usando un sensor de inducción electromagnética en la Sabana de Bogotá

La agricultura de precisión busca mejorar la eficiencia productiva, a partir de la variabilidad del agroecosistema. Para ello, se deben delimitar zonas homogéneas de manejo (ZM), dentro del lote de cultivo. Los sensores de inducción electromagnética (IM), que registran la conductividad eléctrica aparente (CEa), permiten identificar variaciones en propiedades del suelo y, por consiguiente, definir, en forma rápida y confiable, zonas con características similares. La investigación tuvo como objetivo delimitar ZM, con fines de manejo específico por sitio (MES), usando un sensor IM en suelos productores de maíz (Zea mays L.), de la Sabana de Bogotá. Para ello, se escogieron dos lotes en los que se sembró maíz, en los municipios de... Ver más

Guardado en:

0123-4226

2619-2551

18

2015-12-31

373

383

http://purl.org/coar/access_right/c_abf2

info:eu-repo/semantics/openAccess

id 053faa0414235cfff7569a027f54f636
record_format ojs
spelling Zonas homogéneas para manejo específico por sitio en maíz usando un sensor de inducción electromagnética en la Sabana de Bogotá
FASSIO, A.; CARRIQUIRI, A.; TOJO, C.; ROMERO, R. 1998. Maíz aspectos sobre fenología. INIA. Montevideo (Uruguay). 59p.
LEIVA, F.; CRIOLLO, V.; GUERRERO, L. 2013. Aproximación al riego por sitio específico: Estudio de caso en la Sabana de Bogotá. Suelos Ecuatoriales. (Colombia). 43(2):82-86.
LARREAL, R. 2005. Definición y establecimiento de la serie San Francisco en la altiplanicie de Maracaibo, sector semiárido. Facultad de Agronomía. Luz. Maracaibo. (Venezuela). 106p.
JOHNSON, C.; DORAN, J.; DUKE, H.; WEINHOLD, B.; ESKRIDGE, K.; SHANAHAN, J. 2003. Field scale electrical conductivity mapping for delineating soil condition. Soil Sci. Soc. Am. J. 65:1829-1837.
INSTITUTO GEOGRÁFICO AGUSTÍN CODAZZI. -IGAC-. 2012. Levantamiento Detallado de Suelos en las Áreas Planas de 14 municipios de la Sabana de Bogotá. IGAC. Bogotá D.C. 492p.
GRISSO, R.; ALLEY, M.; HOLSHOUSER, D.; THOMASON, W. 2007. Precision farming tools: Soil electrical conductivity. Virginia. Cooperative Extension. p.442-508.
GEONICS EM38K2. 2012. Ground conductivity meter operating manual. Geonics Limited. Leaders in electromagnetics. Mississaagua (Ontario). 57p.
DOBERMANN, A.; BLACKMORE, S.; COOK, S.; ADAMCHUK, V. 2004. Challenges and future directions. En: Krishna, K, (ed). Precision farming: Soil fertility and productivity aspects. Ed. Apple Academis Press Inc. (USA). p.71-90.
LITTELL, R.; MILLIKEN, G.; STROUP, W.; WOLFINGER, R. 1996. SAS System for mixed Models, Cary, NC: SAS Institute Inc. 596p.
CUESTA, P.; VILLANEDA, E. 2005. El análisis de suelos: toma de muestras y recomendaciones de fertilización para producción ganadera. En: Manual Técnico Producción y Utilización de Recursos Forrajeros en Sistemas de Producción Bovina en las regiones Caribe y Valles Interandinos. CORPOICA. (Bogotá D.C). 96p.
CORWIN, D.; LESCH, S.; SHOUSE, P.; SOPPE, R.; AYARS, J. 2003. Identifying soil properties that influence cotton yield using soil sampling directed by apparent soil electrical conductivity. Agron. J. 95(2):352-364.
CORWIN, D.; LESCH, S. 2005b. Characterizing soil spatial variability with apparent soil electrical conductivity I. Survey protocols Computers Electronics Agric. 46:103-133.
CORWIN, D.; LESCH, S. 2005a. Characterizing soil spatial variability with apparent soil electrical conductivity: Part II. Case study. Computers Electronics Agric.46:135-152.
COOK, S.; OBRIEN, R.; CORNER, R.; OBERTHUR, T. 2003. Is precision agriculture irrelevant to developing countries? En: Stafford, J.; Werner, A. (eds). Precision agriculture. Wageningen Academic Publishers. Netherlands (Holanda). p.115-119.
BULLOCK, D.; KITCHEN, N. 2007. Multidisciplinary teams: a necessity for research in precision agriculture systems. Crop Sci. 47:1765-1769.
LEIVA, F. 2008. Agricultura de precisión en cultivos transitorios. Universidad Nacional de Colombia. Bogotá. D.C. 107p.
McNEILL, J. 1992. Rapid, accurate mapping of soil salinity by electromagnetic ground conductivity meters. In: Topp, G.C.; Reynolds, W.D.; Green, R.E. (eds). Advances in measurement of soil physical properties: Bringing theory into practice. SSSA Spec. Madison, (WI). p.209-229.
BLACKMER, T.; SCHEPERS, J. 1995. Use of a chlorophyll meter to monitor nitrogen status and schedule fertigation for corn. J. Prod. Agr. (USA). 8:56-60.
http://purl.org/coar/resource_type/c_6501
Text
http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_1843
info:eu-repo/semantics/article
ORTEGA, R.; FLORES, L. 1999. Agricultura de precisión: introducción al manejo sitio-específico. Ministerio de Agricultura, Instituto de investigaciones agropecuarias. CRI Quilamapu. (Chile). p.13-46.
VIEIRA, S. 2000. Uso de geoestadística en estudios de variabilidad espacial de propiedades del suelo. Tópicos em Ciência do Solo. Viçosa. Sociedade Brasileira de Ciência do Solo. Ed. Novais. 87p.
SUDDUTH, K.; KITCHEN, N.; BOLLERO, G.; BULLOCK, D.; WIEBOLD, W. 2003. Comparison of electromagnetic induction and direct sensing of soil electrical conductivity. Agron. J. 95:472-482.
SUDDUTH, K.; KITCHEN, N.; WIEBOLD, W. 2005. Relating apparent electrical conductivity to soil properties across the north-central USA. Computers and Electronics in Agriculture. 46(1-3):263-283.
SIMÓN, M.; PERALTA, N.; COSTA, J. 2013. Relación entre la conductividad eléctrica aparente con propiedades del suelo y nutrientes. Ciencia Suelo (Argentina). 31(1):45-55.
RODRÍGUEZ, J.; GONZÁLEZ, A.; LEIVA, F.; GUERRERO, L. 2008. Fertilización por sitio específico en un cultivo de maíz (Zea mays L.) en la Sabana de Bogotá. Agr. Col. 26(2):308-321.
ROBERTS, D.; KITCHEN, N.; SUDDUTH, K.; SHARF, P. 2010. Will variable-rate nitrogen fertilization using corn canopy reflectance sensing deliver environmental benefits. Agronomy. J. 102:85-95.
BONGIOVANNI, R.; MANTOVANI, E.; BEST, S.; ROEL, Á. 2006. Agricultura de precisión: Integrando conocimientos para una agricultura moderna y sustentable. Ed. Instituto Interamericano de Cooperación para la Agricultura (IICA). (Uruguay). 244p.
ANDERSON-COOK, C.; ALLEY, J.; ROYGARD, R.; KHOSLA, R.; NOBLE, R.; DOOLITTLE, J. 2002. Differentiating soil types using electromagnetic conductivity and crop yield maps. Soil Sci. Soc. Am. J. 66:1562-1570.
ADAMCHUK, V. 2011. On-the-go soil sensors - are we there yet? Ed. McGill University. Ste-Anne-de-Bellevue. Quebec (Canada). p.63.
application/pdf
La agricultura de precisión busca mejorar la eficiencia productiva, a partir de la variabilidad del agroecosistema. Para ello, se deben delimitar zonas homogéneas de manejo (ZM), dentro del lote de cultivo. Los sensores de inducción electromagnética (IM), que registran la conductividad eléctrica aparente (CEa), permiten identificar variaciones en propiedades del suelo y, por consiguiente, definir, en forma rápida y confiable, zonas con características similares. La investigación tuvo como objetivo delimitar ZM, con fines de manejo específico por sitio (MES), usando un sensor IM en suelos productores de maíz (Zea mays L.), de la Sabana de Bogotá. Para ello, se escogieron dos lotes en los que se sembró maíz, en los municipios de Facatativá y de Bojacá y, en estos, se midió la CEa y el contenido de agua en el suelo (Wsc). Se elaboraron mapas de CEa y Wsc y se delimitaron tres ZM, dentro de cada lote. En esas ZM, se tomaron muestras edáficas para análisis fisicoquímico de laboratorio y se determinó altura de planta, índice SPAD a los 60 y 120ddg y rendimiento del cultivo. El análisis estadístico, se realizó con SPSS V22 y SAS V 2.5. Los resultados mostraron correlaciones entre la CEa y el contenido de limo en Bojacá y el de arcilla en Facatativá y diferencias estadísticas significativas en los rendimientos de maíz entre ZM. Esta investigación destaca la utilidad del sensor IM para delimitar ZM, con fines de MES.  
Alfaro Rodríguez, Ricardo
Rodrigo Leiva, Fabio
Iván Gómez, Manuel
Conductividad eléctrica aparente
agricultura de precisión
suelos agrícolas
cereales
18
2
Núm. 2 , Año 2015 :Revista U.D.C.A Actualidad & Divulgación Científica. Julio-Diciembre
Artículo de revista
text/html
Revista U.D.C.A Actualidad & Divulgación Científica
https://creativecommons.org/licenses/by-nc-sa/4.0/
Español
https://revistas.udca.edu.co/index.php/ruadc/article/view/163
Publication
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
Homogeneous zones for site-specific management in maize using an electromagnetic induction sensor at the Bogota Sabana
Precision farming aims to improve production taking into account variability of the agricultural system. To do this, homogeneous management zones (HZ) are delimited within the crop field. The use of electromagnetic induction (EMI) sensors that record apparent electrical conductivity (ECa) allows to identify variations in soil properties and in turn to define quickly and reliably zones with similar characteristics. The research had as objective ZM delimitation for site-specific management (SSM) using an EMI sensor in soils under maize crops (Zea mays L.) at the Sabana de Bogotá. For this, two agricultural fields were chosen in Facatativá and Bojacá, and in them it was measured ECa and soil water content (Wsc). Maps of ECa and Wsc were drawn and three ZM were defined within each field. In these ZM, soil samples were taken for physicochemical laboratory analysis and it was determined plant height, SPAD index at 60 and 120 DDG and crop yield. Statistical analysis was performed with SPSS V22 and SAS V 2.5. The results showed correlations between ECa and content of silt in Bojacá and clay content in Facatativá, and statistically significant differences in maize yields between the ZM. This research highlights the utility of the IM sensor to define ZM for SSM.
Journal article
Apparent electrical conductivity
precision agriculture
agricultural soils
cereals
2015-12-31
2619-2551
https://revistas.udca.edu.co/index.php/ruadc/article/download/163/127
10.31910/rudca.v18.n2.2015.163
https://doi.org/10.31910/rudca.v18.n2.2015.163
2015-12-31T00:00:00Z
2015-12-31T00:00:00Z
373
0123-4226
383
https://revistas.udca.edu.co/index.php/ruadc/article/download/163/1277
institution UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDECIENCIASAPLICADASYAMBIENTALES/logo.png
country_str Colombia
collection Revista U.D.C.A Actualidad & Divulgación Científica
title Zonas homogéneas para manejo específico por sitio en maíz usando un sensor de inducción electromagnética en la Sabana de Bogotá
spellingShingle Zonas homogéneas para manejo específico por sitio en maíz usando un sensor de inducción electromagnética en la Sabana de Bogotá
Alfaro Rodríguez, Ricardo
Rodrigo Leiva, Fabio
Iván Gómez, Manuel
Conductividad eléctrica aparente
agricultura de precisión
suelos agrícolas
cereales
Apparent electrical conductivity
precision agriculture
agricultural soils
cereals
title_short Zonas homogéneas para manejo específico por sitio en maíz usando un sensor de inducción electromagnética en la Sabana de Bogotá
title_full Zonas homogéneas para manejo específico por sitio en maíz usando un sensor de inducción electromagnética en la Sabana de Bogotá
title_fullStr Zonas homogéneas para manejo específico por sitio en maíz usando un sensor de inducción electromagnética en la Sabana de Bogotá
title_full_unstemmed Zonas homogéneas para manejo específico por sitio en maíz usando un sensor de inducción electromagnética en la Sabana de Bogotá
title_sort zonas homogéneas para manejo específico por sitio en maíz usando un sensor de inducción electromagnética en la sabana de bogotá
title_eng Homogeneous zones for site-specific management in maize using an electromagnetic induction sensor at the Bogota Sabana
description La agricultura de precisión busca mejorar la eficiencia productiva, a partir de la variabilidad del agroecosistema. Para ello, se deben delimitar zonas homogéneas de manejo (ZM), dentro del lote de cultivo. Los sensores de inducción electromagnética (IM), que registran la conductividad eléctrica aparente (CEa), permiten identificar variaciones en propiedades del suelo y, por consiguiente, definir, en forma rápida y confiable, zonas con características similares. La investigación tuvo como objetivo delimitar ZM, con fines de manejo específico por sitio (MES), usando un sensor IM en suelos productores de maíz (Zea mays L.), de la Sabana de Bogotá. Para ello, se escogieron dos lotes en los que se sembró maíz, en los municipios de Facatativá y de Bojacá y, en estos, se midió la CEa y el contenido de agua en el suelo (Wsc). Se elaboraron mapas de CEa y Wsc y se delimitaron tres ZM, dentro de cada lote. En esas ZM, se tomaron muestras edáficas para análisis fisicoquímico de laboratorio y se determinó altura de planta, índice SPAD a los 60 y 120ddg y rendimiento del cultivo. El análisis estadístico, se realizó con SPSS V22 y SAS V 2.5. Los resultados mostraron correlaciones entre la CEa y el contenido de limo en Bojacá y el de arcilla en Facatativá y diferencias estadísticas significativas en los rendimientos de maíz entre ZM. Esta investigación destaca la utilidad del sensor IM para delimitar ZM, con fines de MES.  
description_eng Precision farming aims to improve production taking into account variability of the agricultural system. To do this, homogeneous management zones (HZ) are delimited within the crop field. The use of electromagnetic induction (EMI) sensors that record apparent electrical conductivity (ECa) allows to identify variations in soil properties and in turn to define quickly and reliably zones with similar characteristics. The research had as objective ZM delimitation for site-specific management (SSM) using an EMI sensor in soils under maize crops (Zea mays L.) at the Sabana de Bogotá. For this, two agricultural fields were chosen in Facatativá and Bojacá, and in them it was measured ECa and soil water content (Wsc). Maps of ECa and Wsc were drawn and three ZM were defined within each field. In these ZM, soil samples were taken for physicochemical laboratory analysis and it was determined plant height, SPAD index at 60 and 120 DDG and crop yield. Statistical analysis was performed with SPSS V22 and SAS V 2.5. The results showed correlations between ECa and content of silt in Bojacá and clay content in Facatativá, and statistically significant differences in maize yields between the ZM. This research highlights the utility of the IM sensor to define ZM for SSM.
author Alfaro Rodríguez, Ricardo
Rodrigo Leiva, Fabio
Iván Gómez, Manuel
author_facet Alfaro Rodríguez, Ricardo
Rodrigo Leiva, Fabio
Iván Gómez, Manuel
topicspa_str_mv Conductividad eléctrica aparente
agricultura de precisión
suelos agrícolas
cereales
topic Conductividad eléctrica aparente
agricultura de precisión
suelos agrícolas
cereales
Apparent electrical conductivity
precision agriculture
agricultural soils
cereals
topic_facet Conductividad eléctrica aparente
agricultura de precisión
suelos agrícolas
cereales
Apparent electrical conductivity
precision agriculture
agricultural soils
cereals
citationvolume 18
citationissue 2
citationedition Núm. 2 , Año 2015 :Revista U.D.C.A Actualidad & Divulgación Científica. Julio-Diciembre
publisher Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
ispartofjournal Revista U.D.C.A Actualidad & Divulgación Científica
source https://revistas.udca.edu.co/index.php/ruadc/article/view/163
language Español
format Article
rights http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/4.0/
references FASSIO, A.; CARRIQUIRI, A.; TOJO, C.; ROMERO, R. 1998. Maíz aspectos sobre fenología. INIA. Montevideo (Uruguay). 59p.
LEIVA, F.; CRIOLLO, V.; GUERRERO, L. 2013. Aproximación al riego por sitio específico: Estudio de caso en la Sabana de Bogotá. Suelos Ecuatoriales. (Colombia). 43(2):82-86.
LARREAL, R. 2005. Definición y establecimiento de la serie San Francisco en la altiplanicie de Maracaibo, sector semiárido. Facultad de Agronomía. Luz. Maracaibo. (Venezuela). 106p.
JOHNSON, C.; DORAN, J.; DUKE, H.; WEINHOLD, B.; ESKRIDGE, K.; SHANAHAN, J. 2003. Field scale electrical conductivity mapping for delineating soil condition. Soil Sci. Soc. Am. J. 65:1829-1837.
INSTITUTO GEOGRÁFICO AGUSTÍN CODAZZI. -IGAC-. 2012. Levantamiento Detallado de Suelos en las Áreas Planas de 14 municipios de la Sabana de Bogotá. IGAC. Bogotá D.C. 492p.
GRISSO, R.; ALLEY, M.; HOLSHOUSER, D.; THOMASON, W. 2007. Precision farming tools: Soil electrical conductivity. Virginia. Cooperative Extension. p.442-508.
GEONICS EM38K2. 2012. Ground conductivity meter operating manual. Geonics Limited. Leaders in electromagnetics. Mississaagua (Ontario). 57p.
DOBERMANN, A.; BLACKMORE, S.; COOK, S.; ADAMCHUK, V. 2004. Challenges and future directions. En: Krishna, K, (ed). Precision farming: Soil fertility and productivity aspects. Ed. Apple Academis Press Inc. (USA). p.71-90.
LITTELL, R.; MILLIKEN, G.; STROUP, W.; WOLFINGER, R. 1996. SAS System for mixed Models, Cary, NC: SAS Institute Inc. 596p.
CUESTA, P.; VILLANEDA, E. 2005. El análisis de suelos: toma de muestras y recomendaciones de fertilización para producción ganadera. En: Manual Técnico Producción y Utilización de Recursos Forrajeros en Sistemas de Producción Bovina en las regiones Caribe y Valles Interandinos. CORPOICA. (Bogotá D.C). 96p.
CORWIN, D.; LESCH, S.; SHOUSE, P.; SOPPE, R.; AYARS, J. 2003. Identifying soil properties that influence cotton yield using soil sampling directed by apparent soil electrical conductivity. Agron. J. 95(2):352-364.
CORWIN, D.; LESCH, S. 2005b. Characterizing soil spatial variability with apparent soil electrical conductivity I. Survey protocols Computers Electronics Agric. 46:103-133.
CORWIN, D.; LESCH, S. 2005a. Characterizing soil spatial variability with apparent soil electrical conductivity: Part II. Case study. Computers Electronics Agric.46:135-152.
COOK, S.; OBRIEN, R.; CORNER, R.; OBERTHUR, T. 2003. Is precision agriculture irrelevant to developing countries? En: Stafford, J.; Werner, A. (eds). Precision agriculture. Wageningen Academic Publishers. Netherlands (Holanda). p.115-119.
BULLOCK, D.; KITCHEN, N. 2007. Multidisciplinary teams: a necessity for research in precision agriculture systems. Crop Sci. 47:1765-1769.
LEIVA, F. 2008. Agricultura de precisión en cultivos transitorios. Universidad Nacional de Colombia. Bogotá. D.C. 107p.
McNEILL, J. 1992. Rapid, accurate mapping of soil salinity by electromagnetic ground conductivity meters. In: Topp, G.C.; Reynolds, W.D.; Green, R.E. (eds). Advances in measurement of soil physical properties: Bringing theory into practice. SSSA Spec. Madison, (WI). p.209-229.
BLACKMER, T.; SCHEPERS, J. 1995. Use of a chlorophyll meter to monitor nitrogen status and schedule fertigation for corn. J. Prod. Agr. (USA). 8:56-60.
ORTEGA, R.; FLORES, L. 1999. Agricultura de precisión: introducción al manejo sitio-específico. Ministerio de Agricultura, Instituto de investigaciones agropecuarias. CRI Quilamapu. (Chile). p.13-46.
VIEIRA, S. 2000. Uso de geoestadística en estudios de variabilidad espacial de propiedades del suelo. Tópicos em Ciência do Solo. Viçosa. Sociedade Brasileira de Ciência do Solo. Ed. Novais. 87p.
SUDDUTH, K.; KITCHEN, N.; BOLLERO, G.; BULLOCK, D.; WIEBOLD, W. 2003. Comparison of electromagnetic induction and direct sensing of soil electrical conductivity. Agron. J. 95:472-482.
SUDDUTH, K.; KITCHEN, N.; WIEBOLD, W. 2005. Relating apparent electrical conductivity to soil properties across the north-central USA. Computers and Electronics in Agriculture. 46(1-3):263-283.
SIMÓN, M.; PERALTA, N.; COSTA, J. 2013. Relación entre la conductividad eléctrica aparente con propiedades del suelo y nutrientes. Ciencia Suelo (Argentina). 31(1):45-55.
RODRÍGUEZ, J.; GONZÁLEZ, A.; LEIVA, F.; GUERRERO, L. 2008. Fertilización por sitio específico en un cultivo de maíz (Zea mays L.) en la Sabana de Bogotá. Agr. Col. 26(2):308-321.
ROBERTS, D.; KITCHEN, N.; SUDDUTH, K.; SHARF, P. 2010. Will variable-rate nitrogen fertilization using corn canopy reflectance sensing deliver environmental benefits. Agronomy. J. 102:85-95.
BONGIOVANNI, R.; MANTOVANI, E.; BEST, S.; ROEL, Á. 2006. Agricultura de precisión: Integrando conocimientos para una agricultura moderna y sustentable. Ed. Instituto Interamericano de Cooperación para la Agricultura (IICA). (Uruguay). 244p.
ANDERSON-COOK, C.; ALLEY, J.; ROYGARD, R.; KHOSLA, R.; NOBLE, R.; DOOLITTLE, J. 2002. Differentiating soil types using electromagnetic conductivity and crop yield maps. Soil Sci. Soc. Am. J. 66:1562-1570.
ADAMCHUK, V. 2011. On-the-go soil sensors - are we there yet? Ed. McGill University. Ste-Anne-de-Bellevue. Quebec (Canada). p.63.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2015-12-31
date_accessioned 2015-12-31T00:00:00Z
date_available 2015-12-31T00:00:00Z
url https://revistas.udca.edu.co/index.php/ruadc/article/view/163
url_doi https://doi.org/10.31910/rudca.v18.n2.2015.163
issn 0123-4226
eissn 2619-2551
doi 10.31910/rudca.v18.n2.2015.163
citationstartpage 373
citationendpage 383
url2_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/download/163/127
url3_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/download/163/1277
_version_ 1797159420562505728